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ABSTRACT

By treating the motion of bed-load sediment as a random
process, several families of functions for the one-dimen.

sional distribution of characteristic phenomena are given.
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INTRODUCTION

The motion ef bed-leoad sediment is an important problem for the
regularization of waterways and the building of hydraulic works.
N@tvithgtanding the research carried out during several decades,
ene has to eenelude that a general theory of the bed-load mech
anism is not yet available.

it is gemerally admitted now that the hydrodynamic forces de
veloped by the cantac; of the fluid with grains lying on the bed
of the stream gurmount the resistances due to contact of the
grains with the bed, thus resulting in the pull-out of the grainms.
This pulling-eut is only possible in the upper layer. During the
process the grains start to vibrate, to gyrate in place and then
geparate suddenly, lesing centact with the bed; by sliding, :
yelling or jumping they continue the motion, until they are stop
ped by ether grains, or until the instantaneous hydraulic forces
become insufficient for the continuation of the motion.

This diserete motion of individual grains results into the devel
epment of a gteady motion of the sediment.

This concise description makes it clear that we have here simui
taneeus motion ef two different physical phases and their reci
precal influences, and, therefore, the essential elements of the
process are the structure of the fluid flow; the characteristics
of the material of the bed and their contact. The instantaneous
values of the hydrodymamic forces vary with time, as well as does
the exposure of the grains to hydrodynamic influences,because in
time some grains ghall be eroded or deposited around a given
grain. There is ne deubt that all this defines a random process
=instantaneous hydrodynamic ferces dependent and, consequently,
dependent om the turbulent characteristics of the flow and on



the instantaneous positions of the grains on the bed.

RANDOM PHENOMENA CONSIDERED

In a historical review of the analyses of the motion of bed-load
sediment as a random process, we point out that a longitudinal
dispersion of the grain groups was considered first - by Einstein
(1937), Lean and Crickmore (1962).

Hubbell and Sayre (1964) have proposed to cbserve the diSplécE
ment of individual grains and to analyze the distribution fung
tion of the displacement length of a grain and that for a rest
period. Grigg (1970), Yang and Sayre (1971) and Stelzer (1972)

performed studies based on that idea.

The basic idea of this paper is to analyse the random phenomena
that can be experimentally observed, to derive analytic expres
sions for the distribution functions of the random phenomena
considered, and to explain, with the help of such functiomns, the
nature of the motion of the sediment and the main variables which

influence its transport and dispersion.

On considering the motion of a grain one can distinguish the pe

riods of displacement and periods of rest, which alternate.

By observing the motion of a single grain, one notes and analyses

the following random phenomena:

- the number of stoppings of the grain during a fixed time interval,

- the number of stoppings of the grain during a fixed length

interval,

- the duration of the period covering v cycles of the grain motion

(v displacements and Vv resting periods),



- the length of the total trajectory followed during n displace

ments of the grain.

The above indicated phenomena must be explained by the four

families of distribution functions.

On observing the number of stoppings of the grain in the fixed
time interval (0,t*), the experiment must be repeated several
times to obtain the distribution function . One trial gives an
integer as the result; consequently this phenomena can be de
scribed but by a discrete distribution function. Similar con
clusions are equally valid in observing the number of stoppings

of the grain in the fixed length inter§a1 (0,x*). One can vary

the values of t* and x*'by different intervals - for example,

t* = 5, 10,...60min and x* = 20, 30,....200cm - in the laboratory,

and thus obtain two families of discrete distribution functions.

It is important to analyse the duration of the period between
two stoppings of the grain. Considering that the rest periods
of the grain:are usually the greater parts of the total motion,
they can be used as estimates.

The duration of the period can be represented by any real number
and, therefore, the phenomenon can be described by a continuoug

digstribution function,

It is also interesting to observe the length of the distance
travelled in a grain displacement. This phenomenon can evidently

also be described by a continuous distribution function.

As n* can have different values n* = 1, 2,...,k, it is evident
that we can analyse the displacement lengths and the periods by
the continuous distribution functions., There is a mutual rela
tionship between the families of such functions, because here we
have a singlé random process. Such families and their parameters

define also the position distribution function for the grains at



a given instant (longitudinal dispersion of the group of the-

grains of sediment).

DEFINITION OF THE RANDOM PROCESS

Let us follow the motion of the bed-load sediment in a straight
channel by observing marked grains immersed in the channel bed
at the time t = 0, It is not possible to predict with certainty
the distance covered by a grain up to the time t,

*

Therefore, we can write

szxt (t,m)

as representing a random process for the motion of the sediment,

The probability space is an ordered triplet:
{a,#,p}

where Q@ = (w) is the apace of the elementary events g, & is a
0 - algebra the elements of which are certain subsets of the

Q space and P , a probability defined on the family &£ .

A random trajectory for this process is represented by some
functions which characterize the motion of the grain of sediment,
The motion of a grain can be represented by a tachograph (Fig.l)

or a hodograph (Fig.2).

Such diagrams, characteristic of the motion of sediment, present
a succession of periods of rest and displacement. The rest

periods are represented on the tachograph by time intervals with
a null instantaneous velocity; on the hodographs they are seen

as straight segments parallel to the time axis.



We have supposed that grains move only upstream. This means
that the trajectories of the random process are non—-decreasing

monotone functions continuous in time.

In the mathematical sense a trajectory represents an elementary
event w and the space of all possible trajectories is the Q
space. All possible subsets of the @ space form a o-algebra.

In what follows, we shall analyse certain interesting events for

measurable subsets which constitute a og-algebra, namely:

- the subset of the trajectories of the space @, for which the
total distance covéred up to the instant t is less or equal

£0. X,

—- the subset of the trajectories satisfying the condition that
the total number of stoppings of the grain during this time

interval is less than Vv,

- the subset of the trajectories for which the total number of
stoppings of the grain in the length interval considered is

less than n,

- the subset of the trajectories for which the period for Vv

cycles is less thamn t,

- the subset of’the trajectories for which the length of the

total displacement during n displacement is less than X.

The subsets enumerated define certain important phenomena in the
motion of sediment. To describe these phenomena it is necessary
to evaluate the probabilities of the indicated subsets, namely,

five families of distribution functions.

GRAIN STOPPINGS-IN THE TIME INTERVAL

It is not possible to predict with certainty the number of grain

stoppings within the time interval (0,t). This phenomenon is



considered for the set A
t
Ev:{ni:‘- \?}

where m; represents the random number of stoppings from the
ingtant t =0 to:t: (> .0),

The characteristics of the set EL are

¥1>0 E}['!E.

:=0, i =]

vl__JoE:f Ny

The phenomenon of stopping time is a marcovian process with

following properties:

PIESYEL) =a(t,v)at+o(at) , A140
P(ESYIEY) = 1-a(t,v) At +o (ah), 4140
PIEMIEY) =o(an , 22

PLED) =1

The probability of v stoppings of the grain in the interval

(0,t + At) is equal to the sum of probabilities.of'v stoppings _
at (0,t) and zero stoppings at (t,t + At); the probabilities

of v - 1 stoppings at (0,t) and one stopping at (t,t + At), etc.,:

v
PeL®h = ¥ peel, &Y
r=o

From this equation one can develop partial differential equations

by using the given properties of the marcovian process, as follows:

apPel)
3t

At,~-10 PEL ) - i, Peel) v 1,2,

aPE!)
X

-Alt,00pP(E!)



The initial conditions are:
s ) N
1= 0 P(Eg) = 1

t=0 P =0 v=1,2,..

The solution of differential equations must give the law of the
probability of the number of stoppings for a time interval. This
solution depends on the form of the stopping intensity function
in the interval A(t,v), which represents the limiting value of

the conditional probability of a grain stopping in a very short
interval (t,t + At), if a grain is stopped several times in the

interval (0,t). »

In forming the intensity function the nature of the motion should

be taken into account, The following postulates must be satisfied:

a) ¥1>0  A(t,v)>0

Which means that during the time t there always is a certain prob
ability for the stopping of the grain in the interval (t,t + At)
if it is stopped Vv times in the interval (0,t). This postulate
influences the average number of stoppings of the grainm in the

interval (0,t), defined as:

3 B 1
A1) = My = 30 v PILEY)
v=1i
It can be proved that this is also expressed by

Q N\ (1)

¥i>0 =

>0

meaning that the increase of the time interval results in the

increase of the average number of stoppings of the grain.

b) lim DAL = const # oo

The limit of the time derivative of the number of stoppings is

finite even for large time intervals,

We have investigated many forms of the time intensity function.



The most general form analysed was
A(t,v) =A(1)A2(V)

as a product of a time function A1 (t) and a stoppings number

function A2(V).

A;(t) is a continuous analytic function. The integral of Ai1(t)

is given by

A|“) =f;1¢\1{5) ds

2

The A2 (v) function can be put into the form

e v

Aa(v) = 1+.1+v

In this case one obtainsthe following solution for the differ

ential equation:

= N ) : i 18k
) N 1 et , S -
PIEL) = —= [ [t+|(e+11]2,{ oi(Y)+1) & i
v oy 0 i=0

The limit of this expression for large time intervals is:

lim =20 = (1+0) lim A1)

On Fig. 3 we give the intensity functions, the average number of
stoppingé per time interval and the probability law for the number
of stoppings for the preceding form, as well as for the following

Ayle):
A (1) sac+ PPt

STOPPINGS OF THE GRAIN PER LENGTH INTERVAL

The random number of stoppings of the grain along a lemngth u_

from x = O up to x(x > 0) is described by the random event:

Gp = @*x=n]



The characteristics of the set GE are:

6G; N 6 =0, i#j
R Rk
n=oG"‘hnM

The number of stoppings referred to a length interval is a random

marcovian process with the following properties:

P(G?XIG:) s xix,n) Ax+olak) ,  Ax$O
P{G%le:}=1-x(x,n) Ax +olax) , AxtO
P(65*|6X) = o(at) , i>2, axio
P(Gg) = 1

The estimation of the probability of the set Gﬁ is analogous to

the derivation of the set Et' One begins by the expression:

n
PUGHDX). = Y p(6Ri62%)
r=o

and ends up with a system of partial differential equations, to

wit:
P(GX)
_a__é,(;g,ﬂ___. = x(x, n-1) P{G:_i)“X{x’n) P(G:} nEl 2
ap(eX)
— 2t == %%, 0) F(55)

The initial conditions are:
0 P(Ga) =1
0 P(GR)=0 (g O

X

X

In this system of differential equations the intemsity function

for the stopping of the grain in a length interval appears:

®%(x,n) . It represents the limiting value of the conditional
probability of a grain stopping in a very short interval (x,x + Ax),
with the condition that the grain would stop n times in an

interval (0,x).
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The solution of the differential equations depends on the form

of the longitudinal intensity function of stoppings.

In developing the longitudinal intensity function it is necessary
to satisfy a postulate conditioned by the nature of the motion

of the sediment:

- There is always a certain probability on (0,x) for the grain
stopping in an interval (x,x + Ax), if it has stopped n times in

the interval (0,x).

¥x>o0 ®(x,n) >0
Or, in other form,
¥x >0 Fxax,nl >0
: X

where K (x) represent the arithmetic mean of the number of

stoppings in the interval (0,x).

We have-analysed a more general form of the longitudinal intensity
function, represented by the quotient:

Rq(x)

R{X,ﬂ} - '3&2(n}

The function X4(x)is analysed as

Ry (x) = a(1-eD%)
While 2€2(n) has the form

x2(n1=1+'—3—

In this case, the solution of the differential equations gives
the law of the probability of the number of stoppings of a grain

in the length interval, as follows:

(i ____ n . -1 = kf{x’
P(G;] .P + Z I‘H'l( )(14"?1")“ e 1+i/e

where

fe(x) = [X 2, (s)ds
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On Fig.4 one has the longitudinal intensity functions, the average
number of stoppings and the probability law of the number of
stoppings of a2 grain in a length interval for an experiment in

a leboratory channel,

DURATION OF THE PERIOD BETWEEN STOPPINGS

Let T,y be a random interval during which the grain accomplishes
V cycles of motion.
We assume this to be a continuous random variable, with a distri

bution function defined by:
Foth =P {1y}, 120

a . . t :
For a mathematical derivation we use theknown set Ev with a prob

ability defined by:

P(E¥J= P{‘l‘i..<._1<'ti_”}

P(E‘;}=P{1151}— P{Tisy < 1)

)

By summing the probabilities from i = 0 to i = V-1 one gets:
N-1

ZP(‘E’)=\§P—< e o <
e e(ne) - 3 e (s

izo
V-1 '
i)—:o PIED) = P{Tost}-P {T,<1)
On assuming T,=0, one gets P{Tbst}:f, and, finally, the expression

for the distribution function of the period for Vv cycles of

motion of the grain:

N-1
(1) = 1=37 P(E])
: izo

The probability density follows easily:

folt) =2 (t,v=-1) p(el
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We see that the distribution of the period depends on the prob
ability of the set EE and, consequently, on the function of

time intensity.

With the form adopted for time intensity function:

e~ )
1+v

A (1,v) = (1) (14

one gets the distribution function of the period of V motion

cycles as follows:

- 8/
-A i=Vv-1 ==t V-1 (l‘!‘i)v 1 - I.
= i AR i+1
Ryl te e tessy —1)'9 .|:l [1+:<e+n]I§O: -0 (77) T Y

LENGTH OF DISPLACEMENT

Let 5, be the length of the trajectory described by the grain

during n_displacements,

Obviously,& is a continuous random variable, with a distribution

funetion

%(xl=P{§n$x}

The mathematical derivation is analogous to the preceding one,

by using the set Gx and the expression

P(G)'P{E <x} - P{Enﬂ,‘_}‘

One obtains finally the expressions for the distribution func

tion of the trajectory for n displacements of the grain:

Fn (x)'t-ﬁj P(G )
izo

and the probability density:
fn(x) =2 (x,n-1) P(GX_)

It is evident that the longitudinal intensity function plays
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an important role in the displacement length distribution. We
shall present the solution for the distribution functions for
digplacement lengths for a more general form of the longitudinal

intensity function, to wit :

x(X,n) = ._.x_1.£.[_:.)—-
‘|+"?—

Here ®,(x) is a continuous analytic function. Our analysis has

borne on a particular form of this function :

%, (x) = all- e b%)

2

where a and b are positive real constants.

For the above form of the longitudinal intemsity function one
gets the probability density for the length covered by a grain
during n displacements, as follows:
%, (x)
n-2

: Pt ] i+n-1 ,n-t . -—
fn(){) -21(X}Wi§:o (-1) ( ; )(1+-:;—) Bkt '/f.

POSITION OF THE GRAINS AT A GIVEN INSTANT

Todorovic (1966) has shown that the distribution function of the
random process in question can be expressed by two approximate

functions Ftl(x) and th(x), with the following characteristics:

0< Fx) € Fp(x) € F,x) <1

Fa
The approximations Ft (x) and th(x) in their most general form °
1
are defined by the expressions:
©o o 1’
Rylxt =L ), PLEGGY)
N0 j=v+i

[=-]

F, () = =y ): P{E G")

\)0}-\?
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On using the postulate of the independence of the probability
of the number of stoppings of the grain during the time intexr
val with relation to the same probability in the length inter

val :
piEl @62 = POEL) PLGH)

one gets

F.(x)=P(ED)+ v e peh) pP(c%)
t 2 vza j3§+1 v )

- t T T t X
ok = P(Eo)-l-VE i>=:v P(EY P(G])

This is a general forms from which the distribution functions
of a process Xt can be evaluated as functions of the form of

longitudinal and temporal intensity functions.
The mathematical expectation 6f the position of the grains at
a given instant is equal to
MX1 = MS{. M'qt
with a variance
, : : 2
var Xy = Varg,. My, + (ME,)° Var 7,

where M5, and Var § = are respectively the mean and the variance

of the distance traversed by a grain during a displacement;

-Mn1and Var m; are the mean and the variance of the number

of stoppings of the grain during the time interval,
EXPERIMENTS IN A LABORATORY CHANNEL
The tests for our theofy were performed in a laboratory channel

in Porto Alegre, Brasil, by a team of the Radioactive Researches

Institute of Belo Horizonte, during September and December of



.15

1971 and August, 1973, Two kinds of experiments were done:

- a series of tests based on the observation of displacement

characteristics of single grains.

- a series based on the registration of the displacement of

the group of radioactive grains an the bottom of the channel.

The experiments were performed in a rectangular channel 30 meters
long, with a width of 0,40m and the depth of 0,50m; the fixed
inclination was 2%. . The channel was fed by water pumped from

a large stabilization reservoir with a constant level, The
~water flow in the chafdnel is measured by a rectangular weir

at the entry. At the upstream portion of the channel there is

a regulating sluice which maintains the water level.

Before starting the experiments, a level bed 10em thick was
prepared with sand., The upstream and downstream parts were
protected over the length of one meter with boards having sand

grains glued on and placed on the bottom.

Before the tracing experiment the channel was put in service
for several hours in order to establish an equilibrium state
for the motion of sediment, In order to maintain this regime
after the tracer experiment was started, the sediment was fed

in by continuous automatic feeding by two electrical vibrators.

The bed-load sediment transported out of the channel during the
experiments was recovered in the sedimentation basin at the
downstream end of the channel, In this manner, the flow of

'sediment was measured precisely.

The material used was natural sand with a semi~ angular form, an
average diameter of 1,20mm and a parameter of ¢ * 1,26 for the

normal~log law.
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During the experiments dunes are formed on the bottom of the
channel. Such dunes were registered automatically by micro
echosounding. They were observed along the whole length of
the channel- - (throughout the longitudinal profile of the bed),
as well as time variations of the profile on a fixed segment

of the channel.

During éhe essays with displacement detection of single grains
as tracers, glass grains were used, with 2 density of 2,67g/cm?,
irradiated until the high specific activity of 20-30uCi by
Iridium - 192,

The detection is done by scintillation probes (SPP-3) with a
Mogeley type recorder with two channels. The scintillation probe
was put on wheels and positioned directly over the observed

grain during the experiment. The use of a lead collimator perx
mitted a precise measﬁrement of the position (1 to 2cm). The
moment of displacement of the grain was determined precisely by
the recorder reading. The new position of the grain is deter
mined again 15 seconds later at the most, the detection system

being moved manually.

In the series of experiments with radioactive grains, natural
sand was used as a tracer marked by Au-198 on the surface of

the grains (Courtois -Caillot process),

The tracer is immersed in the bed of the channel in the form
of a transverse band 0,5cm thick. We have used 30g of sand

marked with a total activity of 5mCi of Au-198.

The detection is done by scintillation detectors mounted on an
electric carriage moving along the channel with a speed of 6m/min.
The digital radioactivity counter prints the total activity for

each 25c¢m of the channel length.
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EXPERIMENTAL RESULTS

Several experiments were performed on single grains under
different hydraulic conditions. During a test under the same
hydraulic conditions, grains with different diameters were

observed.

Based on the experiments and experimental distributiom fungc
tions, we have analysed the form of time and longitudinal inten
sity functions, i.e. both the theoretical and experimental parts

of the investigation were developed simultaneously.

In order to present the experimental results. and the adjustment
of experimental results to the distribution functions we give as
an example the recordings of the grain D: 307 displacement
records in a experiment done in August 1973, with a flow of

25 litres/second.

Fig.5 shows the probagbility laws for the number of stoppings of
the grain during the time interval, while Fig.6 shows the distri
bution functions of the period for 1, 2, 3 and 4 cycles. Both -
these theoretical families of distribution functions are defined

by the 3 parameters &, B and 6.

Fig.7 presents the probability laws for the number of stoppings

of the grain in the length interval x = 20, 30 ,44¢+180cm. Fig:8
gives the distribution functions of the distances covered

during 1, 2, 3 and 4 displacements of the grain., These two fami
lies of distribution functions are defined by three new parameters

a, b and p.
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The results of all the tests, for a dune-formed bed, can be

gummarized as follows:

[
|

on analysing the number of stoppings of the grain in 2
time interval, the ratio between the variance and the

arithmetic mean is greater than unity,

ii — the increase of an average number of stoppings of a grain

in a time interval is not constant:

d A (1)

const
dt -

>

[
[ bl
[
i

the ratio between the variance and the arithmetic mean
of the number of stoppings in a length interval is less,

than unity,

iv - the coefficient of variation of the period during a cycle

of motion of the grain is greater than unity.

\Z - the coefficient of variation of the length during a

displacement of the grain is less than unity.

These characteristics of the experimental results have dictated
the application of a mathematical model with temporal and :
longitudinal intensity functions which depend, begides the
length of the interval (of time or length, respectively), also

on the number of stoppings of the grain in the given interval,

The results of the position detection tests for a group of

grains have confirmed the application of the model described above.
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