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ABSTRACT

Molybdenum enrichment in pristine organic-C-rich sedimentary rocks forms the basis for inferring the presence
of dissolved oxygen in seawater. Organic matter removes dissolved hexavalent Mo from seawater where anoxic
and euxinic conditions are attained. However, it is unknown whether this Mo-based proxy is retained under
metamorphic conditions where organic C is no longer preserved. Here, we describe aggregates of graphite and
molybdenite (MoS,) containing up to 21 mass per cent of W as tungstenite (WS,) in solid solution. These aggre-
gates are disseminated in a sulfide-rich Mn-silicate-carbonate rock (queluzite), metamorphosed under
amphibolite-facies conditions within the Archaean Barbacena greenstone belt in Minas Gerais, Brazil. Our finding
indicates that: (i) W is, like Mo, a palaeoenvironmental proxy; (ii) the W proxy is sensitive to high fS,/fO, envi-
ronments; (iii) both Mo and W proxies survive amphibolite-facies overprint as (Mo,W)S, intergrown with
graphite. Archaean greenstones are potential candidates for storing palaeoenvironmental information as
(Mo,W)S,-graphite intergrowths.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Molybdenite (MoS,) is the most important ore mineral of molybde-
num and occurs in a variety of ore deposits associated with felsic igne-
ous rocks. The mineral is isostructural with tungstenite (WS,) and a
complete solid solution between them exists in the synthetic system
Mo-W-S (Moh and Udubasa, 1976). In more complex systems involv-
ing silicate melts, Mo is fractionated from W in response to variations
in fugacity (f) of oxygen and sulfur, and to the preference of Mo to
form its own sulfide (Candela and Bouton, 1990; Lodders and Palme,
1991; Mengason et al., 2011). In fact, “Mo in nature is mostly found as
a sulfide, while W is usually found in the form of oxygen compounds”
(Goldschmidt, 1954). This fractionation is also expressed in the general
lack of W accommodated as WS, in molybdenite. Where detected in
molybdenite, W can be ascribed to analytical interference from tung-
state minerals (H6ll and Weber-Diefenbach, 1973; Pasava et al., 2016).
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Only a few examples of limited solid solution of tungstenite in molybde-
nite have adequately been recorded, all in association with igneous
rocks (Barkov et al., 2000; Pasava et al., 2015; Silva et al., 2015),
attaining up to about 6 mass per cent (%) of W in molybdenite
(Barkov et al., 2000). It thus seems that magmatic-hydrothermal envi-
ronments rarely reach the high fS,/fO, conditions that are necessary
for an extensive solid-solution series between molybdenite and
tungstenite, and/or that W is already removed - that is, fractionated —
from the magmatic-hydrothermal system at the time of molybdenite
precipitation.

Precipitation of MoS; not only occurs in magmatic-hydrothermal
systems, but also in organic-rich sedimentary rocks that accumulated
in anoxic and euxinic environments (Helz et al., 1996; Kao et al,,
2001). In such rocks, S-rich organic matter is capable of capturing Mo
soluble as molybdate in seawater where a threshold concentration of
H,S is reached (Helz et al., 1996; Tribovillard et al., 2004). Organic-
matter trapping of W soluble as tungstate in seawater may take place
in a similar way, in form of thiotungstate, but it requires H,S concentra-
tions that are two orders of magnitude higher than those needed for Mo
fixation as thiomolybdate (Mohajerin et al., 2016). Accordingly, uptake
of both Mo and W by organic matter in seawater is possible if the fS,/f0,
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ratio is sufficiently high. Conversely, the occurrence of W-rich MoS,, a
solid solution between WS, and MoS,, in ancient black-shale deposits
has the ability to provide information about seawater fS,/fO,. Here, we
describe for the first time WS,-rich molybdenite from a metamor-
phosed sedimentary deposit formed in a black-shale environment with-
in an Archaean greenstone belt. This finding suggests that WS,-rich
molybdenite intergrown with graphite represents a mineralogical
proxy for a “whiff of oxygen” (Anbar et al., 2007), which would other-
wise be obscured by greenstone-belt metamorphism.

2. Geological setting and sample material

We examined samples of a Mn-silicate-carbonate rock, queluzite
(Derby, 1901, 1908), from the Morro da Mina mine near Conselheiro
Lafaiete in Minas Gerais. The rock is part of a manganese-formation
unit, the Lafaiete Formation, which is traceable for over 100 km
(Ebert, 1957, 1962). The Lafaiete Formation consists of gondite,
queluzite, graphite schist, quartzite and paragneiss. Gondite refers to a
carbonate-free, Mn-silicate rock, whereas queluzite is a Mn-silicate
rock containing carbonate (Dasgupta et al., 1990; see below). These
rocks are part of the Barbacena greenstone belt (Pires, 1978), which is
assumed to be of Archaean age. An Archaean depositional age of
~2.7 Ga for the Lafaiete Formation has been suggested on the basis of
stratigraphic correlation with the Rio das Velhas greenstone belt in the
Quadrilatero Ferrifero to the north (Fig. 1; Herz and Banerjee, 1973;
see Baltazar and Zucchetti, 2007, for age constraints on the Rio das
Velhas greenstone belt). Recently, another greenstone-belt sequence,
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Pitangui, to the northwest of the Quadrilatero Ferrifero (Fig. 1), has
had its stratigraphic correlation with the Rio das Velhas greenstone
belt corroborated with geochronological data (Soares et al., 2017).
An Archaean age for Pitangui lends support to the correlation between
the Lafaiete Formation and the Nova Lima Group of the Rio das
Velhas greenstone belt (Grossi Sad et al., 1983). The Barbacena
greenstone belt was intruded by a tonalitic pluton during the
Palaeoproterozoic at 2124 + 2 Ma (zircon and titanite U-Pb age, Noce
et al., 2000).

Queluzite is currently the main Mn-ore type at the Morro da Mina
mine, which has been in operation since 1902. Queluzite orebodies are
surrounded by quartz-biotite schist with intercalations of graphite
schist, quartzite, garnet-amphibole schist and amphibolite. The latter
contains the following mineral assemblage: hornblende, plagioclase
(about Anyg), garnet, biotite and clinozoisite (Herz and Banerjee,
1973), which indicate amphibolite facies of regional metamorphism. A
minimum metamorphic temperature of 600 °C can be estimated on
the basis of the assemblage rhodochrosite-tephroite-pyroxmangite
found in queluzite (Peters et al., 1974). The Mn orebodies consist mostly
of queluzite and subordinate gondite. The rock queluzite has an essen-
tial Mn-carbonate component, ubiquitous graphite and a variety of
Mn-silicate minerals, such as spessartine, rhodonite, pyroxmangite
and tephroite, whereas gondite is a Mn-silicate rock widely free of car-
bonate, the main silicate component of which is spessartine (Candia and
Girardi, 1979; Derby, 1908; Guimardes, 1929; Hussak, 1906; Miller and
Singewald, 1917; Pires, 1983; Viana, 2009), as well as disseminated
alabandite, MnS (Park et al., 1951; Viana, 2009).

de Minas
Carajag,
BRAZIL
Brasilia
o Ll
= «Quadrilatero
3 Rio de Janeiro®’ Ferrifero
E
= Town/Village
0 * Morro da Mina
% City Mn-ore mine
D Minas Sg., Espinhago Sg. and Bambui Gr.
=1
= . Greenstone belts
i 1. Rio das Velhas
= 2. Pitangui
3. Congonhas—Itaverava ‘ 4
4. Barbacena
T Gneiss, granite, migmatite and
tonalite—trondjhemite—granodiorite
N
0 15 30 km A
500000 550000

600000

Do,
i Hoﬁi?nteé
7%

000¥8.LL

Ouro ﬁwt;

000¥€LL

ongelheiro \
afaiete

)

Projection: UTM - 23°S

600000

650000

Fig. 1. Distribution of greenstone belts in the Quadrilatero Ferrifero and adjacent areas, and location of the Morro da Mina mine; geological outline as compiled from Dorr (1969) and

Corréa Neto et al. (2012). Sg. = Supergroup; Gr. = Group.
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The rock succession of Morro da Mina experienced isoclinal folding
and ductile shearing, the superposition of which resulted in a sigmoidal
geometry of queluzite orebodies, reaching 100 m in thickness (Viana,
2009). Shear zones are marked by graphite schist. Its shear surfaces are
prominently striated - that is, slicken striae developed on graphite-
forming foliation. Massive veins of rhodonite, a few centimetres thick,
occur in queluzite orebodies.

Our sample material is a collection of queluzite rocks from the ore
stockpile of the Morro da Mina, hence the sample collection represents
the run of mine. Seven (7) hand specimens of queluzite were selected
for this study. The hand specimens look massive, but at close inspection
a slight layering is discernible. The samples are fine in grain size and
dark grey in colour, being easily scratched with the point of the pick.
Two samples of graphite schist were added for whole-rock chemical
analyses in order to have a local reference for comparison of Mo and
W contents.

3. Analytical methods

Polished sections of queluzite samples were prepared for reflected-
light microscopy - i.e., one for each sample, totaling seven (7) polished
sections. After investigation using reflected light and reconnaissance
energy-dispersive spectroscopy (EDS), sites were selected for electron-
microprobe work by means of two electron-probe microanalysers, a
Cameca SX100 with tungsten filament and a Cameca SXFiveFE with
field emission, at the Technische Universitdt Clausthal. Wavelength-
dispersive-spectroscopy (WDS) measurements were performed using
the SXFiveFE instrument at 10 kV and minimum spot size (~100 nm).
Reference materials and X-ray emission lines (in parentheses) were as
follows: molybdenite (SKow and MoL3), rhodonite (MnKat) and pure
metal (WMa). Counting times were 10 s on peak positions and 5 s on
each background. Detection limits, in mass per cent (%), were 0.08% for
S, 0.4% for Mn, 0.7% for Mo and 0.07% for W.

Molybdenum and W also had their whole-rock concentrations de-
termined by inductively coupled plasma-mass spectrometry (ICP-
MS). The queluzite samples, from which polished sections were pre-
pared, together with two samples of graphite schist, were ground in
an agate mill. Their rock powders were submitted to Bureau Veritas
Commodities Canada Ltd., Vancouver, for [CP-MS analyses for Mo and
W following, respectively, aqua-regia digestion and lithium-borate
fusion.

4. Results

Molybdenite is an accessory mineral in the Morro da Mina queluzite.
The mineral is present in all samples of queluzite (n = 7), in spatial as-
sociation with graphite, which is found as disseminations in the rock
matrix and also as inclusions in alabandite (Fig. 2a). Reconnaissance
EDS work indicated that alabandite has Fe as a minor component -
i.e., Fe-bearing MnS. The rock matrix has Mn-rich carbonate and spes-
sartine as predominant components. Ore minerals, of which graphite
and alabandite are the most abundant, comprise between about 15
and 25% of the rock. Graphite occurs as platelets as long as 30 um,
whereas alabandite forms aggregates reaching over 500 um in length;
where disseminated, grains of alabandite are generally <50 um across.
The relationship between molybdenite and graphite is best displayed
where both minerals are included in alabandite (Fig. 2b). Molybdenite
and graphite commonly form sandwich-like aggregates, commonly
<30 pm in length, in which a molybdenite platelet is enclosed in a
graphite flake (Fig. 2c). Molybdenite platelets are also located on the
surface of graphite and in its immediate vicinity (Fig. 2b, c).

Electron-microprobe analyses of molybdenite gave W contents of up
to 21%. The results, reported in Table 1, refer to molybdenite grains from
one queluzite sample. Table 1 also shows the analyses expressed as per-
centages of end-member components - i.e., MoS;, WS, and MnS,.
Tungsten-rich domains are indistinguishable under reflected light and

Fig. 2. a. Reflected-light photomicrograph of typical queluzite, in which graphite (g) with
and without molybdenite (moly), alabandite (ala) and subordinate sulfide minerals, such
as chalcopyrite (cp), are disseminated in a Mn-silicate-carbonate matrix (shades of dark
grey). b. Backscattered-electron (BSE) image showing aggregates of graphite and
molybdenite (containing WS, in solid solution) as inclusions in alabandite. c. Detail of the
area marked in b: BSE image of a sandwich-like aggregate of graphite and molybdenite.

backscattered-electron imaging from W-poor molybdenite - i.e., close
to the detection limit of 0.07% W. No inclusions of W-rich minerals
could be resolved at the scale of observation. Reconnaissance EDS
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Representative electron-microprobe analyses of molybdenite intergrown with graphite,

Morro da Mina queluzite.

Spotno. (%, mass) (mol.%)

S Mn Mo W Total MnS, MoS, WS,
1 37.86 173 4945 12,67 101.70 5.1 837 112
2 39.03 199 5502 479 100.83 5.7 90.2 4.1
3 38.96 159 56.48 1.21 98.23 46 94.3 1.1
4 36.92 181 4784 1162 98.19 5.6 838 106
5 37.25 1.71 4629 1411 9936 5.3 81.7 130
6 41.15 213 5974 057 10359 5.8 93.7 0.5
7 40.03 1.71 56.81 313 10166 49 92.5 2.7
8 37.01 214 4232 2090 10237 6.6 743 19.2
9 37.01 193 46,64 1469 10028 59 809 133
10 40.85 1.71 58.17 030 101.03 49 94.9 0.3
11 35.84 231 4458 1717 99.90 7.0 774 156
12 39.98 1.95 58.81 0.12 10086 5.5 94.4 0.1
13 38.75 164 57.59 0.53 98.51 4.7 94.8 0.5
14 39.10 224 56.99 0.49 98.81 6.4 93.2 0.4

work did not reveal any other element than those analysed for in the
subsequent WDS session; Ca and Sn, if any, are in trace-element concen-
trations that could not be detected by means of EDS.

The elements Mo and W are inversely correlated in the queluzite
molybdenite, defining a tight array along the MoS,-WS, join (Fig. 3a).
This array indicates solid solution of up to 19 mol.% WS, the highest
amount so far documented in natural molybdenite. It is unlikely that
the linear array is caused by interference from inclusions that are invis-
ible at the resolution of the electron microprobe, or from the surround-
ing material. The latter might be the case for Mn, which yields no
significant correlation between Mo and Mn (Fig. 3b).

Whole-rock contents of Mo and W in queluzite vary from 21 to
185 ppm and from 5 to 43 ppm, respectively (Table 2). These results
agree with the findings, by reflected-light microscopy, of molybdenite
in all queluzite samples. Two samples of graphite schist have lesser
amounts of Mo (14-15 ppm) and W (~5 ppm).

5. Discussion
5.1. Origin of molybdenite

The close spatial association between molybdenite and graphite,
which typically forms sandwich-like aggregates (Fig. 2¢), links Mo and
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Table 2
Whole-rock chemical analyses for Mo and W in
queluzite (samples 1-6) and graphite schist (samples

8-9).

Sample no. Mo (ppm) W (ppm)
1 67 43
2 84 30

3 29 6.7
4 92 15
5 185 25
6 21 9.9
7 23 4.9
8 14 4.6
9 15 5.1

S with organic matter in a reducing sedimentary milieu (see below).
The nature of the molybdenite-graphite aggregates is that of syntaxial
intergrowth, an oriented intergrowth, being {0001} the plane of contact
between graphite and molybdenite. Both minerals have the same
crystal class and space group. A magmatic-hydrothermal origin for the
queluzite molybdenite could be evoked, as molybdenite occurs in
intrusion-related ore deposits. However, molybdenite is not concentrat-
ed in veins, but it is characteristically disseminated in the rock together
with graphite.

The ubiquitous molybdenite-graphite syntaxial intergrowth seems
to have resulted from the metamorphism of a precursor rich in organic
matter with some S and Mo. Such a precursor is suitably explained by
the Mo-trapping capacity of S-rich marine organic matter (e.g., Helz
etal, 1996; Tribovillard et al., 2004). In oxygenated seawater, Mo is sol-
uble as molybdate and conservatively remains in solution unless the
molybdate ion is converted to particle-reactive thiomolybdate in
sulfidic seawater, from which Mo can then be scavenged by sulfidised
organic particles, leading to its concentration in black shales (Helz
et al.,, 1996). We thus suggest that the molybdenite disseminated in
queluzite is the metamorphic expression of S- and Mo-bearing organic
matter that accumulated in a black-shale environment.

5.2. Tungsten-bearing molybdenite as palaeoenvironmental indicator
Like Mo, W not only forms thiotungstate in sulfidic waters

(Mohajerin et al,, 2014, 2016), but it is also enriched, even though to a
much lesser extent than Mo, in sulfide-rich layers hosted in black shales.

8

(b
7 - [
< | .
st .
o
E 6
™~ . .
w .
o 4 ]
= . *
5 - .
e o
.-
4 ' T T T T
70 80 90 100

MoS, (mol.%)

Fig. 3. Diagrams of Mo vs. W (a) and Mo vs. Mn (b), as end-member disulfides, in molybdenite intergrown with graphite (data from Table 1).
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Fig. 4. Diagram of W vs. Mo for queluzite and graphite schist from Morro da Mina, in
comparison with the upper continental crust (Hu and Gao, 2008), Neoarchaean black
shale (Cabral et al., 2013), Lower-Cambrian sulfide ore and host black shale (Xu et al.,
2013), as well as mass Mo/W ratios for seawater (Firdaus et al., 2008), sulfidic pore
waters with up to 100 uM H,S that have mass Mo/W ratios between 0.6 and 44
(Mohajerin et al., 2016), and fluvial and ground waters that show mass Mo/W ratios
similar to their basalt country rock - i.e., 3.3 (Arnérsson and Oskarsson, 2007). The mass
Mo/W values of the Morro da Mina queluzite and graphite schist and those of the Serra
Sul black shale suggest a Mo/W ratio for Archaean seawater that was predominantly de-
rived from weathering of basalt under oxidative conditions.

For example, W contents are on average three orders of magnitude less
than Mo in polymetallic sulfide layers hosted in Early-Cambrian black
shale in southern China (Xu et al., 2013). Both Mo and W behave conser-
vatively in seawater, the mass Mo/W ratio of which is ~1000 (Firdaus
et al., 2008). Assuming that the mass Mo/W ratio of modern seawater
is similar to that in the Early Cambrian, mass Mo/W ratios of the afore-
mentioned polymetallic sulfide layers suggest that Mo and W were
quantitatively scavenged from seawater into organic-matter-rich sedi-
ments (Fig. 4). It is thus reasonable to assume that thiomolybdate and
thiotungstate were scavenged together by S-rich organic matter from
very sulfidic seawater because H,S concentrations for thiotungstate for-
mation are two orders of magnitude higher than those required for
thiomolybdate (Mohajerin et al,, 2016). This is to say that thiotungstate
formation and scavenge by organic matter demand considerably higher
fS,/f05 ratio than thiomolybdate scavenging. It is pertinent to note that:
(i) the mass Mo/W ratios of queluzite and graphite schist are between
those, 0.6 and 44 (Fig. 4), for sulfidic pore waters with up to 100 uM
H,S in a present-day estuarine environment (Mohajerin et al., 2016);
(ii) the mass Mo/W ratios of queluzite and graphite schist are closer to
the average value of fluvial and ground waters, 3.3 (Fig. 4), which is
the same as that of their basalt country rock (Arnérsson and
Oskarsson, 2007). In both cases, dissolution of Mo- and W-bearing min-
erals by oxygenated water is implied to account for aqueous molybdate
and tungstate.

The finding of Mo enrichment and its correlation with organic carbon
in a Neoarchaean black-shale sequence in Western Australia prompted
recognition of Mo derivation from seawater containing small amounts
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of O, - that is, the so-called “whiff of oxygen” (Anbar et al., 2007). The
reasoning behind the “whiff of oxygen” is that oxidative weathering of
molybdenite in crustal rocks is required for mobilising Mo as the
unreactive molybdate ion (e.g., Anbar et al., 2007). Likewise, O, in the en-
vironment would also be demanded for wolframite dissolution and for
keeping the tungstate ion soluble in seawater, which needs to be suffi-
ciently oxygenated to prevent formation of Fe and Mn wolframates
(e.g., Ryzhenko, 2010).

Applying the considerations above to the molybdenite-tungstenite
solid solutions in queluzite, their occurrence indicates: (i) a relatively
high fS,/fO, ratio during deposition of the precursor of (Mo,W)S,;
(ii) the existence of soluble Mo and W as molybdate and tungstate, re-
spectively, in O,-bearing seawater above the euxinic water column; (iii)
preservation of the high fS,/fO, ratio during subsequent metamorphism.
A pristine analogue of the metamorphic molybdenite-graphite inter-
growth is a C/MoS, mixed-layer phase found in Early-Cambrian black
shales of low-grade metamorphism in southern China (Kao et al., 2001).

5.3. Implications for Archaean greenstone belts

The use of Mo enrichment as a proxy for molybdate reduction in a
column of anoxic and euxinic waters has relied on sediments and
rocks without, or with only low-grade, metamorphic overprint, in
which organic C is preserved (e.g., Anbar et al., 2007; Cabral et al.,
2013; Dahl et al., 2013; Helz et al., 1996; Lehmann et al., 2007;
Tribovillard et al., 2004). These conditions are different from those
recorded in the Morro da Mina queluzite, which is hosted in an Archae-
an greenstone belt that experienced regional metamorphism of am-
phibolite facies. This raises an important question: how reliable is the
Mo proxy in metamorphic rocks where primary organic C is no longer
preserved? The expected correlation of Mo enrichment and organic C
seems to be expressed as metamorphic (Mo,W)S,-graphite inter-
growth that is disseminated in queluzite. Such an intergrowth makes
greenstone belts, in particular their graphite-bearing rocks, potential
candidates for storing palaeoenvironmental signals in tungstenite-
bearing molybdenite that is spatially associated with graphite. Although
a precise depositional age for the Archaean Barbacena greenstone belt
is not available, the aggregates of graphite and tungstenite-bearing
molybdenite are suggestive of a mildly oxygenated water column
above anoxic and euxinic waters. Our suggestion is in line with indepen-
dent evidence that tracks enhanced levels of atmospheric oxygen from
2.5 Ga back to ca. 3.0 Ga ago (Crowe et al., 2013; Stiieken et al., 2015),
and of dissolved W in Archaean seawater (Large et al., 2014). The latter
is expressed in the low Mo/W ratios recorded in the Morro da Mina
queluzite and the Neoarchaean black shale of Serra Sul, Brazil (Fig. 4).
Their Mo/W ratios close to those of basalt imply basalt dissolution by
0,-bearing waters (Arnérsson and Oskarsson, 2007).

6. Conclusion

Our study shows that the incorporation of tungstenite into molybde-
nite as solid solution is more extensive than previously recorded in nat-
ural samples. This compositional extension reflects: (i) availability of
Mo and W as molybdate and tungstate ions, respectively, in Archaean
seawater, (ii) a very high fS,/fO, ratio during the precipitation of
C/(Mo,W)S, from anoxic and euxinic waters; (iii) preservation of
the depositional fS,/fO, state during subsequent metamorphic over-
print. The new data suggest that (Mo,W)S,-graphite intergrowths
might provide a mineralogical proxy for palaeoenvironmental condi-
tions, even for Archaean rocks that experienced regional metamor-
phism of greenschist and amphibolite facies.
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