Investigation of the Solid State Reaction of LaMnO₃ with Fe^o and its effect on the Catalytic Reactions with H₂O₃

Flávia C. C. Moura,^a Maria H. Araujo,^a José D. Ardisson,^b Waldemar A. A. Macedo,^b Adriana S. Albuquerque^{*,b} and Rochel M. Lago^{*,a}

> ^aDepartamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil

^bLaboratório de Física Aplicada, Centro de Desenvolvimento de Tecnologia Nuclear, CDTN-CNEN, 31270-901 Belo Horizonte-MG, Brazil

Neste trabalho, reações entre a perovskita LaMnO_{3,15} e Fe^o foram promovidas pelo tratamento térmico da mistura Fe^o/LaMnO_{3,15} a 200, 400 e 600 °C. Análises por espectroscopia Mössbauer, difração de raios X (DRX), redução em temperatura programada (TPR) e desorção em temperatura programada (O₂-TPD) sugerem que a 400 °C e a 600 °C a perovskita transfere oxigênios para o Fe^o, produzindo uma perovskita deficiente em oxigênio, LaMnO_{3,6}, e formando óxidos de ferro altamente dispersos, principalmente Fe₃O₄ e FeO. Os parâmetros de rede e os tamanhos de cristalitos obtidos por DRX mostram que o LaMnO₃ sofre uma forte distorção da rede cristalina após a reação, mas sem o colapso da estrutura perovskita. Estudos de reatividade sugerem um efeito especial de interface na mistura Fe^o/LaMnO_{3,15} a temperaturas mais altas, observa-se uma diminuição da atividade de decomposição do H₂O₂, porém um aumento na atividade de oxidação do corante. Estes resultados são discutidos em termos de uma diminuição da concentração das espécies Mn³⁺_{sup} e Mn⁴⁺_{sup}, ativas para a decomposição do H₂O₂, com a formação de espécies Mn²⁺_{sup} e Fe²⁺_{sup}, ativas para a reação de Fenton.

In this work, the reaction of the perovskite LaMnO_{3.15} with Fe^o has been promoted by thermal treatment of the mixture Fe^o/LaMnO_{3.15} at 200, 400 and 600 °C. Mössbauer spectroscopy, X-ray diffraction (XRD), temperature programmed reduction (TPR) and temperature programmed desorption (O₂-TPD) analyses suggested that at 400 and 600 °C oxygen from perovskite is transferred to Fe^o to produce an oxygen deficient perovskite, LaMnO_{3.6}, and highly dispersed iron oxides, mainly Fe₃O₄ and FeO. XRD lattice parameters and crystallite size showed that LaMnO₃ suffers a strong lattice distortion after reaction but no collapse of the perovskite structure. Reactivity studies pointed to a special interface effect of Fe^o/LaMO₃ towards two reactions with H₂O₂, the decomposition to O₂ and the oxidation of the model molecule, the methylene blue dye. As the treatment temperature of the Fe^o/LaMnO_{3.15} increased, the activity for H₂O₂ decomposition decrease in the concentration of Mn⁴_{surf} and Mn³⁺_{surf} species, active for the Fenton reaction.

Keywords: perovskites, iron oxides, Fenton, Mössbauer spectroscopy

Introduction

Metallic iron and iron oxides have been extensively investigated in several environmental applications, such as the reductive treatment of organic and inorganic groundwater contaminants, e.g. reactive permeable barriers,^{1,2} and the advanced oxidation Fenton process.³⁻⁵ This is mainly due to the versatile chemical-redox behavior, low toxicity and low cost of iron and iron oxides. However, these iron compounds show relatively low activity and many efforts in this area are currently directed to improve the efficiency and widen the application of these systems in environmental remediation processes.

^{*}e-mail: rochel@ufmg.br, asa@cdtn.br

We have recently reported two ways to increase the activity of Fe^o and iron oxides in these applications, *i.e.* (*i*) the combination of the oxide with metallic iron^{4,5} and (*ii*) the introduction of Mn in the iron oxide structure.^{3,6} The combination of Fe₂O₄ with Fe^o strongly increases the activity for the Fenton chemistry and also for the electron transfer reactions of Fe^{o.4,5} This increase in activity was discussed in terms of a thermodynamically favorable electron transfer from Fe^o to Fe₂O₄ to generate Fe²⁺, we find that Fe^{2+} and Fe^{2+} species active for the reactions. Also, the presence of Mn in the oxide structure, e.g. $Fe_{3-x}Mn_xO_4$, produces a remarkable increase in the activity for the Fenton reaction.^{3,6} The high reactivity was explained by a redox cycle where Mn^{2+}_{surf} species were oxidized by H_2O_2 to generate radicals and subsequently regenerated by reduction of Mn³⁺ by Fe²⁺ bulk.

In this work, we investigate for the first time the use of the perovskite LaMnO₃ and the mixture Fe^o/LaMnO₃ as catalysts in the Fenton reaction. The perovskites LaMnO₃ and its derivatives La_{1-x}A_xMn_{1-y}M_yO₃ (where A can be a lanthanide, actinide, alkaline or earth alkaline metal and M a transition metal such as Co, Fe and Ni) show interesting properties for the reactions with H₂O₂, such as the possibility of Mn in different oxidation states, Mn²⁺, Mn³⁺, Mn⁴⁺, and a flexible oxygen stoichiometry (δ), allowing a control of their redox behavior.⁷ Hereon, we describe in detail the interface reaction of LaMnO₃ with Fe^o and its effect on the reactions with H₂O₂, *i.e.*, the decomposition to O₂ and the oxidation of the organic probe molecule, the methylene blue dye.

Experimental

The perovskite LaMnO₃ was prepared by coprecipitation of a solution (85 mL) of Mn^{3+}_{aq} 0.05 mol L⁻¹ ($Mn(NO_3)_3$, Synth) and La^{3+}_{aq} 0.05 mol L⁻¹ ($La(NO_3)_3$, Synth) with NaOH (180 mL of 2 mol L⁻¹) at room temperature. The solid obtained was extensively washed, dried at 80 °C for 5 h and treated at 800 °C in air for 4 h. The mixtures Fe°/LaMnO₃ used iron metal α -Fe° (Sicalab).

The Fe°/LaMnO₃ mixtures were prepared with a metal:oxide weight ratio of 1:1 by simple manual grinding for 60 s using an agate mortar. The thermal treatment was carried out in a quartz tube under argon (99.995%) flow (50 mL min⁻¹) heated from room temperature to 200, 400 or 600 °C at 10 °C min⁻¹ and kept at the final temperature for 2 h. The mixtures were then quenched to room temperature under argon atmosphere by removing the quartz tube from the oven and using compressed air to cool down the external tube wall.

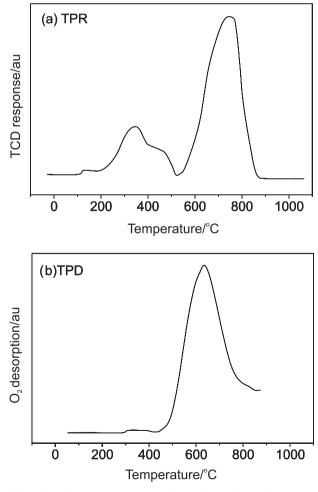
The transmission ⁵⁷Fe Mössbauer spectroscopy analysis was carried out on a CMTE spectrometer model MA250 with a 57 Co/Rh source at room temperature using α -Fe° as reference. Assuming that all phases possess the same recoilfree fraction, the analysis of the experimental data was carried out by a least-squares computer minimization routine, using a sum of Lorentzian spectral components characterizing different iron phases.8 The spectra were fitted using the NORMOS DO BRANT program.9 The powder X-ray diffraction (XRD) data were obtained on a Rigaku model Geigerflex diffractometer using Cu K_a radiation, scanning from 2 to 75° at a scan rate of 4° min⁻¹. The values of the lattice parameters were obtained by a least-squares refinement using the method of Holland & Redfern.^{10,11} The TPR (temperature programmed reduction) analysis was performed in a CHEM BET 3000 TPR using H₂ (8% in N₂) with a heating rate of 10 °C min⁻¹. The H₂ consumption was obtained after calibration of the TPR system using standard CuO. The TPD (temperature programmed desorption) was carried out using a HP quadrupole mass spectrometer to measure the O₂ desorbed during the heating (10 °C min⁻¹) under vacuum (10⁻⁶ torr). The hydrogen peroxide (Synth) decomposition was carried out with 11 mL of a H₂O₂ solution (0.9 mol L⁻¹) and 60 mg of the alloyed mixture, measuring the formation of gaseous O₂ in a volumetric glass system. For the oxidation of methylene blue (3.5 mL at 0.05 g L⁻¹), 0.1 mL of H₂O₂ 30% and 30 mg of the Fe^o/ LaMnO₃ mixtures were added to the aqueous solutions (prepared with Millipore MilliQ water) under stirring. All reactions were carried out using magnetic stirring in a recirculating temperature controlled bath kept at 25 ± 1 °C. The oxidation of methylene blue was monitored via UV/ Vis (Varian Cary 50 Conc). The hydrogen peroxide was added only after the adsorption equilibrium took place. The solution spectroscopic absorbance usually decreased only between 3 to 6%. After the reactions, the aqueous phases were analyzed for Fe and Mn by atomic absorption (Carl Zeiss Jena AAS).

Results and Discussion

*Characterization of the LaMnO*₃ by TPR and TPD: oxygen availability for reaction

In order to investigate the oxygen availability and reactivity for the transference to Fe°, the prepared LaMnO₃ was characterized by TPR (temperature programmed reduction) and O₂-TPD (temperature programmed desorption). TPR analysis of LaMnO₃ (Figure 1a) showed two sets of peaks: (*i*) at 200-530 °C and (*ii*) at temperatures higher than 550 °C. The peaks at 200-530 °C have been

assigned to the reduction of Mn^{4+} and also to the reduction of some Mn^{3+} with loss of oxygen, according to the process:¹²


$$LaMnO_{3+\delta} + nH_2 \rightarrow LaMnO_{3-x} + nH_2O$$
(1)

The high temperature TPR peak centered at 760 °C is related to the reduction of all Mn^{3+} to Mn^{2+} , leading to the collapse of the perovskite structure to produce mainly La₂O₃ and MnO:¹²

$$2LaMnO_{3,x} + nH_2 \rightarrow La_2O_3 + 2MnO + nH_2O$$
(2)

From the total hydrogen consumption, the oxygen stoichiometry obtained for the perovskite in this work was ca. LaMnO_{3.15}, which agrees with different values reported in the literature.¹³

The O_2 -TPD experiment (Figure 1b) shows that oxygen is released from the perovskite structure at temperatures higher than 500 °C, as a broad O_2 desorption peak centered at 650 °C can be observed. This O_2 , named β -oxygen,¹⁴ is

Figure 1. (a) Temperature programmed reduction, TPR, and (b) oxygen temperature programmed desorption, TPD, of LaMnO₃.

related to the desorption of non-stoichiometric oxygen and the reduction of Mn^{4+} to Mn^{3+} . A shoulder near 800-900 °C is also observed, which has been assigned in the literature to the reduction of Mn^{3+} to Mn^{2+} .¹⁴

Based on the TPR and TPD results, three temperatures were selected for the treatment of the mixtures Fe°/ LaMnO₃: 200 °C, where the perovskite begins to be reduced; 400 °C, where non-stoichiometric and some stoichiometric oxygen reacts without destroying the perovskite structure and 600 °C, where the perovskite structure can be strongly affected by H₂. Also, the thermal treatment of the Fe°/LaMnO₃ mixtures was carried out under argon flow to avoid non-interface reactions, for example the oxidation of Fe° by O₂ released by desorption, as seen in the TPD experiment.

Interface reactions in the system Fe^o/LaMnO₃

In order to produce a superficial interaction between the particles of Fe^o and the perovskite LaMnO₃ but to avoid an extensive reaction, a very mild mechanical alloying by simple manual grinding for 60 s was used. Alloying for longer time or with higher energy can promote a significant reaction of iron metal with different oxides.¹⁵

Mössbauer spectra of the Fe°/LaMnO₃ mixtures after grinding (25 °C) and after thermal treatment at 200-600 °C are shown in Figure 2. The Mössbauer hyperfine parameters obtained from the spectra can be seen in Table 1.

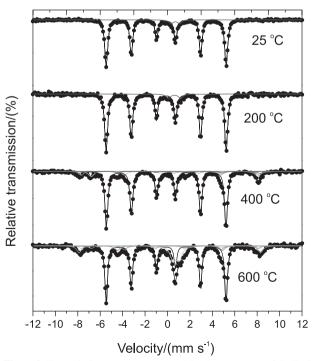


Figure 2. Transmission room temperature Mössbauer spectra of the Fe^{\prime}/LaMnO₃ mixtures treated at 25, 200, 400 and 600 °C under argon atmosphere.

Sample	Phases	Isomer shift (δ) / (mm s ⁻¹) ± (0.05 mm s ⁻¹)	[*] Quadrupole splitting (Δ) / (mm s ⁻¹) ± (0.05 mm s ⁻¹)	Hyperfine field ($\Delta_{\rm Hf}$) / T ± (0.5 T)	Relative area / %
Pure Fe ^o	Fe ^o	0.00	0.00	33.0	100
Feº/LaMnO ₃ 25 °C	Fe ^o	0.00	0.00	33.0	97
	Fe ³⁺	0.37	0.69		3
Feº/LaMnO ₃ 200 °C	Fe	0.00	0.00	33.0	96
	Fe ³⁺	0.37	0.68		4
Feº/LaMnO ₃ 400 °C	Fe	0.00	0.00	33.0	75
2	$Fe_3O_4[A]$	0.35	0.02	49.1	10
	[B]	0.66	0.18	46.0	18
	α -Fe ₂ O ₃	0.32	-0.21	51.7	1
	γ-Fe ₂ O ₃	0.30	0.04	50.2	4
	FeO	0.73	0.65		2
Feº/LaMnO ₃ 600 °C	Fe ^o	0.00	0.00	33.0	63
	$Fe_3O_4[A]$	0.35	0.02	49.1	11
	[B]	0.66	0.18	46.0	
	α -Fe ₂ O ₃	0.32	-0.21	51.7	2
	γ-Fe ₂ O ₃	0.30	0.04	50.2	11
	FeO	0.73	0.65		13

Table 1. Mössbauer hyperfine parameters for the Fe°/LaMnO, mixtures treated at 25, 200, 400 and 600 °C under argon atmosphere

*relative to α-Fe

The commercial iron metal used in this work showed only a sextet with quadrupolar splitting of 33 T relative to Fe°. The Fe°/LaMnO₂ mixture after a simple manual grinding for 60s (25 °C) showed, besides the Fe° signal (97%), also a low intensity signal (3%) relative to $Fe^{3_{+}}_{~disperse}\!,$ with δ 0.37 and Δ 0.69 mm s^-1. As pure Fe° ground by the same procedure did not show this signal for $\mathrm{Fe}^{3+}_{\mathrm{disperse}}$, this result suggests that the simple grinding of Feº with LaMnO₂ for 60 s led to some oxidation of the iron metal surface. Upon treatment at 200 °C no significant change was observed. On the other hand, at 400 and 600 °C the relative intensity of Feº signal strongly decreased and new signals related to the Fe₃O₄, FeO, γ -Fe₂O₃/ α -Fe₂O₃ phases appeared. Experiments with pure iron at 600 °C under argon flow did not show any significant reaction, ruling out any oxidation by impurities such as O₂ or H₂O in the Ar gas.

The phase compositions for the different treatment temperatures can be better visualized in Figure 3. It can be observed that at 400 °C the Fe° is converted mainly to Fe₃O₄ (18%). As the reaction was carried out under argon atmosphere, the oxygen to oxidize Fe° should come from the perovskite according to the process:⁵

$$LaMnO_{3,15} + 3 Fe^{\circ} \rightarrow LaMnO_{3,x} + Fe_{3}O_{4}$$
(3)

At 600 °C, the relative Fe° signal intensity further decreases, indicating its consumption in the reaction. As the Fe₃O₄ relative signal intensity decreases, the signals for FeO and Fe₂O₃ (as γ -Fe₂O₃ and α -Fe₂O₃) showed a significant increase. To explain the formation of these iron oxides, one can consider several processes taking place

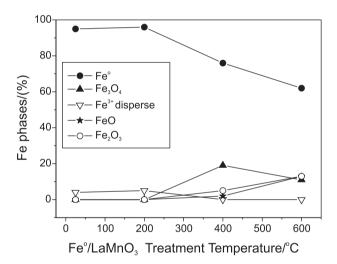


Figure 3. Mössbauer phase compositions of the Fe $^{\circ}$ /LaMnO₃ mixtures thermally treated under argon at 200, 400 and 600 $^{\circ}$ C.

at 600 °C: (*i*) The oxidation of the Fe_3O_4 by LaMnO₃ according to the process:

$$LaMnO_{3.15} + Fe_{3}O_{4} \rightarrow LaMnO_{3-x} + \gamma - Fe_{2}O_{3}$$
(4)

It should also be considered that Fe_3O_4 can be oxidized by air even at room temperature to produce large quantities of maghemite.⁵ Therefore, a significant part of the Fe_2O_3 observed might have been formed after thermal treatment when the sample was exposed to air; (*ii*) The transformation of the maghemite γ -Fe₂O₃ spinel cubic structure to the hematite α -Fe₂O₃ hexagonal structure, which is known to take place at temperatures near 520 °C.¹⁶ (*iii*) The reaction of Fe₃O₄ and Fe₂O₃ with Fe^o to produce FeO, occurring at temperatures near 600 °C.¹⁷ Another process which could take place is the complete reduction of the LaMnO₃, leading to the collapse of the perovskite structure. To investigate this possibility, the thermally treated Fe^o/LaMnO₃ mixtures were also studied by powder X-ray diffraction (XRD). In Figure 4, typical peaks for the LaMnO₃ orthorhombic structure can be observed.¹⁸

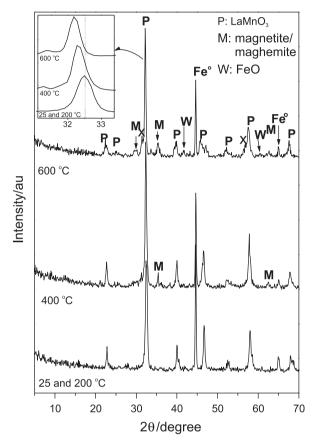
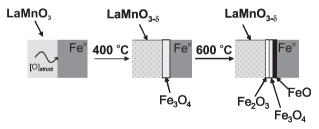



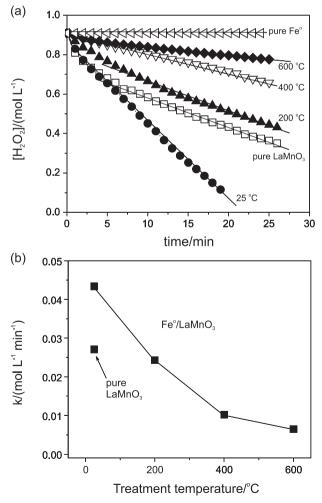
Figure 4. X-ray powder diffractograms of the Fe $^{\circ}$ /LaMnO₃ mixtures after thermal treatment under argon at 200, 400 and 600 $^{\circ}$ C.

When the mixture Fe^o/LaMnO₃ was thermally treated at 200 °C under argon, no significant change was detected. On the other hand, at 400 and 600 °C several changes were observed: (i) the relative intensity of the Fe° diffraction peaks progressively decreases. The ratio I_{xRD}(LaMnO₃)/ $I_{xRD}(Fe^{o})$ (I_{xRD} Fe^o at 20 ca. 45° and I_{xRD} LaMnO₃ at 20 ca. 32°) changes from 0.86 to 0.85, 1.54 and 1.67 for the mixtures treated at 25, 200, 400 and 600 °C, respectively. These results clearly indicate the consumption of the Fe^o upon thermal treatment; (ii) The perovskite diffraction peaks shift to lower angles (Figure 4, detail), suggesting that the lattice parameters are changing after thermal treatment. The lattice parameters obtained for the sample at 25 and 200 °C are similar to the observed in the literature for the pure LaMnO₃ (a = 7.796 Å, b = 5.540 Å and c = 5.508 Å),¹⁹ indicating that at these conditions no significant change in the perovskite structure takes place. On the other hand, after treatment at 400 and 600 °C, the XRD data suggest that the perovskite unit cell volume increased to 245.1 Å³ (a = 7.689 Å, b = 5.540 Å and c = 5.753 Å), likely due to the loss of oxygen from the structure; (iii) Estimation of the crystallite size using the Scherrer equation suggests that the perovskite crystals increase from 170 to 240 and 310 Å as the Feº/LaMnO₂ mixture is treated at 200, 400 and 600 °C respectively; (iv) Although the Mössbauer spectrum clearly shows the formation of Fe₃O₄ at 400 °C, XRD only shows a small and broad peak related to Fe₃O₄, suggesting a highly dispersed phase. On the other hand, at 600 °C better crystallized Fe₃O₄ and FeO were observed, with particle sizes of 103 and 135 Å estimated by the Scherrer equation; (v) No peaks for La₂O₂ (at 27.2 and 31.6°, file 22-0369) or MnO (40.5, 34.9 and 58.7°, file 07-0230) could be detected, suggesting that the collapse of the perovskite structure does not take place significantly or it is producing highly dispersed/amorphous La₂O₃ and MnO phases; (vi) It was also observed that the thermal treatment at 600 °C does not affect the surface area measured by the BET N2 adsorption method, which was ca. 2 m² g⁻¹ for the Fe^o/LaMnO₃ mixture before and after thermal treatment.

Mössbauer and XRD data suggest that the perovskite LaMnO_{3.15} can transfer oxygen to Fe^o by an interface reaction producing new iron oxide phases. Based on these results, a very simple and idealized scheme to explain the surface reaction between LaMnO₃₄₀ and Fe^o can be proposed:

Figure 5. Scheme for the oxygen transfer from LaMnO₃ to Fe^o, forming different iron oxide phases.

After thermal treatment, the particles shown in Figure 5 can be separated by breaking the interface and exposing both surfaces, the reduced LaMnO₃ and the oxidized Fe^o, which have an important effect on the catalytic properties of the materials.


Effect of thermal treatment on the properties of Fe^{\prime} LaMnO₃ towards H₂O₂ reactions

The Fe^o/LaMnO₃ mixtures treated at different temperatures were studied to promote two reactions: (*i*) the decomposition of H_2O_2 to O_2 and (*ii*) the oxidation of methylene blue with H_2O_3 .

The hydrogen peroxide decomposition (equation 5) is a versatile probe reaction to investigate the activity of perovskite catalysts, as (*i*) the experimental set-up is simple, (*ii*) it has been well investigated for different perovskites,¹⁹⁻²² (*iii*) Mn-containing perovskites are especially active for this reaction,²³⁻²⁵ and (*iv*) the activity is very sensitive to changes in the transition metal oxidation state and oxygen vacancies on the surface.

$$H_2O_2 \to H_2O + 0.5 O_2$$
 (5)

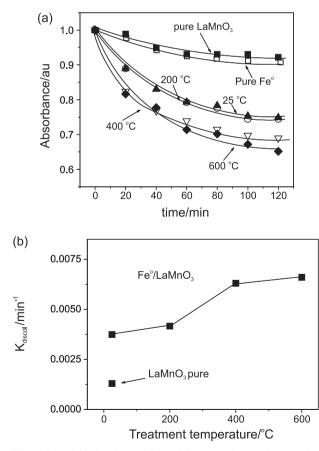
The results obtained for the peroxide decomposition in the presence of the different Fe°/LaMnO₃ mixtures can be seen in Figure 6. The linear behavior of the decomposition plots (Figure 6a) suggests a pseudo zero order dependence on the H₂O₂ concentration under the reaction conditions employed (V_{decomp} = - k_{decomp}.[H₂O₂]°). The pseudo-zero order reaction rate constants calculated from the slope of the decomposition plots are shown in Figure 6b.

Figure 6. (a) Hydrogen peroxide decomposition for the pure LaMnO₃, pure Fe^o and Fe^o/LaMnO₃ mixtures treated at 25-600 °C and (b) pseudo-zero order reaction rates ($[H_2O_2]$ =0.9 mol L⁻¹, 11 mL, 60 mg catalyst).

It can be observed that the pure LaMnO₂ perovskite is highly active for H₂O₂ decomposition. This high activity has been reported in the literature for different Mn perovskites and was assigned to the presence of high oxidation state species, e.g. Mn^{4+,23,25} It has also been reported that oxygen vacancies on the perovskite surface²¹ can play an important role for the H₂O₂ decomposition. Figure 6 shows that, although Feº is completely inactive for the peroxide decomposition, its simple mixture with LaMnO₃ caused a significant increase on the activity. Mössbauer spectroscopy and XRD analyses of the mixture did not show any bulky significant change in Fe^o and LaMnO₂. Therefore, this increase in reactivity suggests that a surface reaction should have taken place by the simple contact of the Feº and the perovskite phases, likely by a superficial oxygen transfer from the perovskite to Fe°. This oxygen transfer should generate two different species: (i) oxygen vacancies on the perovskite surface and (ii) Fe oxidized species on the Fe° surface. Both species can catalyze H₂O₂ decomposition. Previous work has also shown that a simple mixture of Fe° with $Fe_{3}O_{4}$ or Fe₂O₃ produced an increase on the activity for H₂O₂ decomposition.^{4,5} Therefore, the iron oxides formed might have an important contribution to increase the reaction rate.

On the other hand, after thermal treatment at 200, 400 and 600 °C, a progressive decrease in the decomposition activity is observed. Although the reasons for this decrease are not clear, one can envisage that at higher temperatures the oxygen transfer from the perovskite should significantly reduce the concentration of Mn^{4+}_{surf} and also Mn^{3+}_{surf} species on the perovskite to produce Mn^{2+} , leading to a decrease on the H₂O₂ decomposition activity.

The effect of the thermal treatment on the activity of the Fe°/LaMnO₃ mixtures for the oxidation of organic compounds in aqueous medium with H_2O_2 was also investigated. In this study, methylene blue (MB) was used as a probe molecule, as it shows several interesting features: (*i*) it is highly soluble in water, (*ii*) its oxidation can be simply monitored by spectrophotometric measurements and (*iii*) it simulates the behavior of textile dyes, which are an important class of industrial contaminant.


The oxidation of methylene blue was monitored by the discoloration rate, which is related to the first oxidation steps to produce non-colored intermediates

 $Dye + H_2O_2 \rightarrow non-colored intermediates$ (6)

These discoloration measurements give important information on the rate of formation of reactive oxidation species. Some processes that could interfere on the reaction monitoring by discoloration, such as adsorption and reduction of the dye by Fe^o, are minimized by the use of MB, as (*i*) it is a cationic molecule which decreases its adsorption on the LaMnO₃ perovskite and on the iron oxides due to their high PZC (point zero charge) ²⁶ and (*ii*) MB is not easily reduced by pure iron metal.²⁷

The discoloration plots obtained for pure LaMnO₃, pure Fe^o and the Fe^o/LaMnO₃ mixtures treated at 25, 200, 400 and 600 °C are shown in Figure 7. A kinetic treatment using a ln A_t/A_o (where A_t = absorbance at the time t and A_o = absorbance at time zero) *versus* time produced fairly straight lines, suggesting that the kinetics of the discoloration process under the reaction conditions employed can be approximated to a first order dependence on the dye concentration V_{discol}=k_{discol}[dye]⁻¹.

It can be observed that pure LaMnO₃ shows some activity, producing a discoloration of *ca*. 10% after 120 min. Pure Fe^o also showed a similar discoloration activity. However, this discoloration is mainly due to the reduction of methylene blue by Fe^o, as suggested by blank experiments without H₂O₂. It is interesting to observe that the simple mixture of LaMnO₃

Figure 7. (a) Discoloration activity and (b) first order reaction rates for the oxidation of methylene blue with pure LaMnO₃, pure Fe^o and Fe^o/LaMnO₃ mixtures treated at 25-600 °C (dye 3.5 mL at 0.05 g L⁻¹, H₂O₂ 0.28 mol L⁻¹, 30 mg catalyst).

with Fe^o produced a remarkable increase on the activity for the discoloration. Upon thermal treatment at 200 °C, no significant difference was observed. On the other hand, after treatment at 400 and 600 °C, a further increase on the discoloration activity was observed. Atomic absorption analyses for Fe and Mn ions in all solutions after reaction did not show any significant metal content, suggesting the presence of a heterogeneously catalyzed process.

A simple proposal to understand these results is to consider the reaction between the perovskite and Fe^o to produce Mn^{2+}_{surf} and Fe²⁺_{surf} species, according to the process:

$$\frac{Mn^{3+}_{surf}}{Mn^{4+}_{surf}}(LaMnO_{3}) + Fe^{\circ} \rightarrow Mn^{2+}_{surf}(LaMnO_{3}) + Fe^{2+}_{surf}(Fe^{\circ})$$
(7)

It is well known that Fe_{surf}^{2+} species are active for the Fenton reaction.⁴ Previous work in our group^{4,5} suggested that the effect of grinding Fe_3O_4 with Fe° is the reduction of Fe_3O_4 to form higher concentrations of Fe_{surf}^{2+} species active for the Fenton chemistry. Also, several works in the literature showed that Mn^{2+} species, soluble or in solid matrix, are active to promote the Fenton reaction.²⁸⁻³⁰ Therefore, the oxygen transfer from LaMnO₃ to Fe° has two important effects for the H₂O₂ reactions, *i.e.* it decreases the activity for the undesired peroxide decomposition and it produces M^{2+} species active for the Fenton chemistry.

Conclusions

The perovskite LaMnO_{3.15} can transfer oxygen to Fe^o by an interface reaction producing a partially reduced perovskite LaMnO_{3.6} and highly dispersed iron oxides, mainly Fe₃O₄, on the Fe^o surface. As the mixtures Fe^o/LaMnO₃ are treated at 200, 400 and 600 °C, the reactivity towards H₂O₂ decomposition decreases, whereas the activity for the oxidation of methylene blue increases. These results can be discussed in terms of a decrease on the concentration of Mn⁴⁺ surf and Mn³⁺ (active for H₂O₂ decomposition) with an increase on the Mn²⁺ surf and Fe²⁺ surf species, active for the Fenton reaction.

Ackowledgments

The authors are grateful to CNPq, FAPEMIG and CAPES for financial support.

References

1. Khan, F. I.; Husain, T.; Hejazi, R.; *J. Environ. Manage.* 2004, 71, 95.

Moura et al.

- Szecsody, J. E.; Fruchter, J. S.; Williams, M. D.; Vermeul, V. R.; Sklarew, D.; *Environ. Sci. Technol.* 2004, *38*, 4656.
- Costa, R. C. C.; Lelis, F.; Oliveira, L. C. A.; Fabris, J. D.; Ardisson, J. D.; Rios, R. R. A.; Silva, C. N.; Lago, R. M.; *Catal. Commun.* 2003, *4*, 525.
- Moura, F. C. C.; Araújo, M. H.; Costa, R. C. C.; Macedo, W. A. A.; Fabris, J. D.; Ardisson, J. D.; Lago, R. M.; *Chemosphere* 2005, *60*, 1118.
- Moura, F. C. C.; Araújo, M. H.; Oliveira, G. C.; Macedo, W. A. A.; Ardisson, J. D.; Lago, R. M.; *Chem. Lett.* 2005, *34*, 1172.
- Costa, R. C. C.; Ardisson, J. D.; Fabris, J. D.; Macedo, W. A. A.; Lago, R. M.; *J. Hazard. Mater.* 2005, *B129*, 171.
- 7. Pena, M. A.; Fierro, J. L. G.; Chem. Rev. 2001, 101, 1981.
- Longworth, G. In *Mössbauer Spectroscopy Applied to Inorganic Chemistry*, Long, G. J., ed., Plenum Press: New York, 1984, vol. 1, p. 43.
- 9. Teillet, J.; Varret, F.; *MOSFIT program*, University du Maine, France (unpublished).
- Pawley, A. R.; Redfern, S. A. T.; Holland, T. J. B.; *Am. Mineral.* 1996, *81*, 335.
- Holland, T. J. B.; Redfern, S. A. T.; *Mineral. Mag.* 1997, *61*, 65.
- Lee, Y. N.; Lago, R. M.; Fierro, J. L. G.; Cortes, V.; Sapina, F.; Martinez, E.; *Appl. Catal. A* 2001, 207, 17.
- Noginova, N.; Bah, R.; Bitok, D.; Atsarkin, V. A.; Demidov, V. V.; Gudenko, S. V.; *J. Phys.: Condens. Matter* 2005, *17*, 1259.
- Teraoka, Y.; Yoshimatsu, M.; Yamazoe, N.; Seiyama, T.; *Chem. Lett.* **1984**, 893.
- Ding, J.; Miao, W. F.; Pirault, E.; Street, R.; McCormick, P. G.; J. Alloys Compd. 1998, 267, 1999.
- Oliveira, L. C. A.; Fabris, J. D.; Rios, R. R. A.; Mussel, W. N.; Lago, R. M.; *Appl. Catal. A* 2004, 259, 253.

- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R.; *Catal. Today* 1999, 53, 51.
- 18. Shu, Q.; Zhang, J.; Liu, J.; J. Alloy. Compd. 2005, 390, 240.
- Ariafard, A.; Aghabozorg, H. R.; Salehirad, F.; *Catal. Commun.* 2003, 4, 561.
- Falcon, H.; Carbonio, R. E.; Fierro, J. L. G.; J. Catal. 2001, 203, 264.
- Alonso, J. A.; Martinez-Lopez, M. J.; Falcon, H.; Carbonio, R. E.; *Phys. Chem. Chem. Phys.* **1999**, *1*, 3025.
- Goeta, A. E.; Goya, G. F.; Mercader, R. C.; Punte, G.; Falcon, H.; Carbonio, R.; *Hyperfine Interact.* **1994**, *90*, 371.
- Teraoka, Y.; Kakebayashi, H.; Moriguchi, I.; Kagawa, S.; *Denki Kagaku* 1996, 64, 1189.
- 24. Lee, Y. N.; Lago, R. M.; Fierro, J. L. G.; *J. Appl. Catal. A* **2001**, *215*, 245.
- Yang, H. G.; Zhang, T.; Tian, H. J.; Tang, J. W.; Xu, D. Z.;
 Yang, W. S.; Lin, L. W.; *React. Kinet. Catal. Lett.* 2001, 73, 311.
- Rosenholm, J. B.; Kosmulski, M.; Maczka, E.; Jartych, E.; Adv. Colloid Interface Sci. 2003, 103, 57.
- Ma, L. M.; Ding, Z. G.; Gao, T. Y.; Zhou, R. F.; Liu, W. Y. J.; Chemosphere 2004, 55, 1207.
- Watts, R. J.; Sarasa, J.; Loge, F. J.; Teel, A. L.; *J. Environ. Eng.* 2005, 131, 158.
- Xu, X. R.; Li, H. B.; Wang, W. H.; Gu J. D.; *Chemosphere* 2004, 57, 595.
- Tucker, M. D.; Barton, L. L.; Thomson, B. M.; Wagener, B. M.; Aragon, A.; *Waste Manage*. **1999**, *19*, 477.

Received: August 19, 2006 Web Release Date: March 1, 2007