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Transport coefficients for low and high-rate mass transfer
along a biological horizontal cylinder
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ABSTRACT

Knowledge of heat and mass transfer coefficients is essential for drying simulation studies or design of food and grain

thermal processes, including drying. This work presents the full development of a segregated finite element method to

solve convection-diffusion problems. The developed scheme allows solving the incompressible, steady-state Navier-Stokes

equations and convective-diffusive problems with temperature and moisture dependent properties. The problem of si-

multaneous energy, momentum and species transfer along an infinite, horizontal cylinder under drying conditions in

forced convection is presented, considering conditions normally found in biological material thermal treatment or drying.

Numerical results for Nusselt and Sherwood numbers were compared against available empirical expressions; the results

agreed within the associated experimental errors. For high rate mass transport processes, the proposed methodology

allows to simulate drying conditions involving wall convective mass flux by a simple inclusion of the appropriated boun-

dary conditions.
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Coeficientes de transporte para baixas e altas taxas de transferência
de massa ao longo de um cilindro biológico horizontal

RESUMO

O conhecimento dos coeficientes de transferência de calor e massa é essencial para o estudo de simulação de secagem

e para o projeto de processamento térmico de grãos e alimentos, inclusive secagem. Este trabalho apresenta o desenvol-

vimento completo de um método de elementos finitos segregado para resolver problemas de convecção-difusão. O es-

quema desenvolvido permite que se resolvam as equações de Navier-Stokes incompressíveis em regime permanente,

além de problemas convectivos-difusivos com propriedades dependentes da temperatura e da umidade. Apresenta-se o

problema de transferência simultânea de energia, momentum e espécies ao longo de um cilindro horizontal, infinito sob

condições de secagem em convecção forçada, considerando-se condições normalmente encontradas em tratamento tér-

mico ou secagem de material biológico. Compararam-se resultados numéricos para Nusselt e Sherwood com expressões

empíricas disponíveis; os resultados concordaram dentro dos erros experimentais associados. Para processos com altas

taxas de transporte de massa, a metodologia proposta permite simular condições de secagem envolvendo fluxo convec-

tivo de massa na parede, por meio de uma simples inclusão de condições de contorno apropriadas.
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INTRODUCTION

Drying is a unit operation present in several biological
and industrial processes such as drying of agricultural pro-
ducts, food dehydration, wood thermal treatment, drying of
ceramics and brick, and also in the study of moisture mi-
gration in porous media (Keey, 1972; Fortes & Okos, 1980;
Brooker et al., 1992). In the last decades, many researches
related to food and grain drying and heat treatment have been
carried on to obtain the required physical and thermal pro-
perties required for proper drier or process design (Churchill,
1977; Zahed & Epstein, 1992, 1993; Muthu & Chattopa-
dhyay, 1993; de Ville & Smith, 1996; Galan-Domingo &
Martinez-Vera, 1996; Smith, 1996; Sotocinal et al., 1997;
Tolaba et al., 1997).

Drying analysis involves heat and mass transfer conjuga-
te processes, both in the solid and in the fluid. Sophistica-
ted models for drying have been formulated either by means
of classical (mechanistic) theories (Phillip & de Vries, 1957),
or non-equilibrium thermodynamic (Luikov, 1966). Flux
equations based on both irreversible thermodynamics and
mechanistic theories can also be applied to grain drying (For-
tes & Okos, 1981).

A complete modeling of drying problems by means of any
theory involves a set of non-linear diffusion equations as ap-
plied to the drying medium, coupled to the respective boun-
dary layer equations. Numerical (finite difference, FDM, fini-
te volume, FVM, and finite element methods, FEM) and
analytical methods have been used for discretizing and, thus,
solving convective-diffusive partial differential equations. The
literature related to the FEM (Zienkiewicz & Taylor, 1989,
1991; Fortes, 1997; Fang et al., 1997; Carey et al., 1998; Fortes
& Ferreira, 1999; Baker et al., 1999), FVM (Patankar, 1980;
Versteeg & Malalasekera, 1995; Moukalled & Darwish, 1997)
and FDM (Patel et al., 1985; Hirsch, 1988; Hoffman, 1992;
Balzano, 1999; Sengupta & Nair, 1999) used to solve convec-
tion-diffusion problems is abundant, and no intent is made here
to cover the latest developments.

This paper is concerned with FEM as applied to solving
drying-related boundary layer problems; the choice of this
method is related to the simplicity of its application when
complex geometries are to be considered. The FEM, using
Galerkin’s formulation, has been used to solve Navier-Stokes’
equations. However, Galerkin’s method requires the use of
direct solvers of the resulting discretized equations, the use
of distinct interpolation functions for velocities and pressu-
re and it usually leads to numerical errors due to false diffu-
sion and numerical dispersion (Taylor & Hughes, 1981;
Brooks & Hughes, 1982).

A comprehensive review of Petrov-Galerkin and Taylor-
Galerkin FEM is found in Zienkiewicz & Taylor (1989, 1991)
and, thus, from the vast literature, only those works directly
related to the present paper will be considered here. Hughes
(1978) presented a streamline upwind methodology for sol-
ving convective-diffusive equations. The method, which led
to exact one-dimensional solutions, consisted in applying
Galerkin’s method to the diffusive terms and a special inte-
gration method to the advective terms. Brooks & Hughes

(1982) developed a finite element formulation for convecti-
on-dominated flows utilizing a Petrov-Galerkin’s formulati-
on and extending Hughes’ methodology (Hughes, 1978), so
as to decrease false diffusion effects. Schnipke & Rice
(1985a,b) presented a finite element method that makes use
of upwind values to predict streamlined downwind advecti-
on terms; the method employs the same interpolation func-
tion for velocities and pressure and allows the use of a se-
gregated method such as the SIMPLE method (Patankar,
1980). However, Schnipke & Rice’s method (Schnipke &
Rice, 1985a,b) is accurate only for convection-dominated
flows (Gurgel & Fortes, 1994). On the other hand, Shaw
(1991) also followed a strategy similar to the FVM (Patankar,
1980), and developed a Poisson-type equation for the conti-
nuity (pressure) equation, which did not lead to spurious
pressure modes. In this way, Shaw’s method (Shaw, 1991)
also allows using interpolation functions of the same order
for velocities and pressure and iterative methods of solution
of the discretized equations. However, Shaw’s method is li-
mited to problems where Reynolds number are smaller than
5. To overcome the limitation of his method, Shaw (1991)
suggested the use of upwind schemes.

This paper is related to obtaining, via solution of the
Navier-Stokes equations, expressions for heat and mass trans-
fer coefficients applicable to modeling heat treatment of bi-
ological products.

The specific objectives of this work were:
a. To evaluate the predictive ability of the method propo-

sed by Shaw (1991) to solve heat, mass and momentum
simultaneous transfer problems in laminar forced convec-
tion, for eventual application to drying problems;

b. To obtain, via FEM, heat and mass transfer coefficients,
for forced convection across horizontal cylinders, in the
Reynolds numbers range between 20 and 100;

c. To analyze the effect of temperature and concentration
dependent properties over heat and mass transfer coeffi-
cients; and

d. To compare numerical results with available experimen-
tal data.

MATERIAL AND METHODS

Modified FEM for continuity and momentum equations
In this work, the problem of fluid flow around a hori-

zontal infinite cylinder is studied. The analysis involved
the problems of low Reynolds number flow under high and
low rate mass transfer with simultaneous heat, mass and
momentum transfer. The cylinder is assumed to be in con-
tact with the ambient air and the temperature and con-
centration (T∞ and C∞) far from the boundary are fixed,
as illustrated in Figure 1:

Continuity, momentum and property equations for this
two-dimensional, steady and incompressible flow are

0=
y
v+

x
u

∂
∂

∂
∂

(1)
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The associated boundary conditions are:
• at x = 0 u = U∞, v = 0, T = T∞, C = C∞
• at x = xmax ∂u/∂x = ∂v/∂x = ∂T/∂x = ∂C/∂x = 0
• at y = 0 ∂u/∂y = ∂v/∂y = ∂T/∂y = ∂C/∂y = 0
• at y = ymax u = U∞, v = 0, T = T∞, C = C∞, p = 0;
• at the solid wall  u = 0, v = 0, T = Tw, C = Cw.
In the above expressions, u and v are velocity components

in the x and y directions, respectively; p is the pressure com-
ponent; ρ, the fluid density and ρ∞, its ambient value; µ and
cp, the fluid dynamic viscosity and specific enthalpy, respec-
tively; C and T refer to fluid solute concentration (kg va-
por kg-1 dry air) and temperature, respectively; ymax refers
to a y-coordinate where the fluid is (approximately) not affec-
ted by the presence of the cylinder.

One should note that, in the x-momentum equation, if
(ρ∞-ρ)g is neglected, the problem reduces to pure forced con-
vection. If (ρ∞ -ρ)g is considered, along with U∞ ≠ 0, mixed
convection is being analyzed with the effects of the natural
and mixed convection adding each other for U∞ > 0; and,
otherwise, opposing each other. Natural convection is under
consideration if (ρ∞ -ρ)g is not neglected and by imposing
that either U∞ = 0, or ∂P/∂x = 0.

The following method results from modifications impo-
sed on the schemes of Shaw (1991), Hughes (1978) and
Brooks & Hughes (1982). Full developments and justificati-
ons can be found in the same cited references. One should
note the “simple”-like procedure of the FVM (Patankar,

1980, Versteeg & Malalasekera, 1995).
1. Evaluate estimates u* and v* for the velocity profile from

(Brooks & Hughes, 1982):

Where Ω is the spatial domain and Γ is the boundary;
nx and ny are the outward normal unit vectors to each ele-
ment boundary; Ni represent usual linear shape functions;
W refers to the streamline upwind weight used in the Pe-
trov-Galerkin formulation as presented by Brooks & Hu-
ghes (1982) and Zienkiewicz & Taylor (1989, 1991). Ini-
tial values and best approximations for the velocity and
pressure components are designated by u, v and p. From
these values (always assumed to be known at the begin-
ning of an iteration) and the above equations (5 and 6),
one can obtain their starred (*) or approximate values, uj*
and vj*.
2. Evaluate the pressure correction term, pj’, from (Shaw,

1991):

3. Evaluate the velocity correction terms, uj’ and vj’, from
(Shaw, 1991):

4. Form the corrected velocity correction terms, uj, vj and
pj from (Shaw, 1991):

5. Evaluate corrected C and T values from:

6. If the convergence criteria are satisfied, stop; otherwise,
return to step 1.

Finite element subdivision
The region of interest was divided into two sub regions,

r

�� C,T

0p �	


�

�
� �

0v

Uu

�
	

�



�

�
�

0v

0u

C,T ww

)symmetry(0
x

v
,0

y

u �



�






Figure 1. Geometry of an incompressible flow around a horizontal cylinder
and associated boundary conditions

∫∫∫ ΩΩ
−

Ω
− Ω









∂
∂

+
∂
′∂

−=Ω
∂
∂

−Ω
∂
∂

− d
y
v

x
uNpBdDN

y
N

pBdDN
x

N *

i
,
j

1
j

i'
j

1
j

i

(8)

Ω∫Ω∫ ΩΩ dBpDNN=duNN '
j

-1
ji

'
jji (9)

Ω∫Ω∫ ΩΩ dCpDNN=dvNN '
j

-1
ji

'
jji (10)

u = u* + u’; v = v* + v’ and p = p* + p’ (11)

Γ







∂
∂

µ
∂
∂

µ∫Ω







∂
∂

∂
∂

µ
∂
∂

∂
∂

µ
∂
∂

ρ
∂
∂

ρ∫ ΓΩ dn
y
C+n

x
C

N=dC
y
N

y
N+

x
N

x
N+

y
N

Nv+
x
N

Nu yxij
jijij

i
j

i (12)

Γ







∂
∂

µ
∂
∂

µ∫Ω







∂

∂

∂
∂

µ
∂

∂

∂
∂

µ
∂

∂
ρ

∂

∂
ρ∫ ΓΩ dny

T+nx
T

N=dT
y
N

y
N+

x
N

x
N+

y
N

Nvc+
x
N

Nuc yxij
jijij

ip
j

ip (13)

R. Bras. Eng. Agríc. Ambiental, v.10, n.2, p.441–447, 2006.

Transport coefficients for low and high-rate mass transfer along a biological horizontal cylinder

( ) 







∂
∂

µ
∂
∂









∂
∂

µ
∂
∂

+ρ−ρ
∂
∂

∂
∂

ρ
∂
∂

ρ ∞ y
u

y
+

x
u

x
+

x
p-=

y
uv+

x
uu (2)









∂
∂

µ
∂
∂









∂
∂

µ
∂
∂

∂
∂

∂
∂

ρ
∂
∂

ρ
y
v

y
+

x
v

x
+

y
p-=

y
vv+

x
vu (3)









∂
∂

∂
∂

∂
∂

∂
∂









∂
∂

∂
∂

ρ
y
Tk

y
 + 

x
Tk

x
 = 

y
T v+ 

x
Tucp (4)

(5)







∂
∂

∂
∂

∂
∂

∂
∂









∂
∂

∂
∂

ρ
y
CD

y
 + 

x
CD

x
 = 

y
C v+ 

x
Cu

(6)

( ) dΓny
uµ+nx

uµW+dΩρρ
x
p

W

=dΩu
y
N

y
Wµ+

x
N

x
Wµ+

y
N

Wρv+
x
N

Wρu

yxiΓiΩ

*
j

jijij
i

j
iΩ









∂
∂

∂
∂

∫





 −+

∂
∂

−∫









∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∫

∞

(7)

dΓny
vµ+nx

vµW+dΩ
y
p

W-

=dΩv
y
N

y
Wµ+

x
N

x
Wµ+

y
N

Wρv+
x
N

Wρu

yxiΓiΩ

*
j

jijij
i

j
iΩ









∂
∂

∂
∂

∫∂
∂

∫









∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∫



444

as shown in Figure 2. The first and finer subdivided sub re-
gion, R1, could be characterized as having:

• Dimensions (cm): 0 < x < 10 and 0 < y < 5;
• Number of linear quadrilateral elements: 560;
• The discretizing lines were drawn in a direction clo-

sely perpendicular to the cylinder walls.
The second sub region, R2, was characterized by:
• Dimensions (cm): 10 < x <15 (if Re > 60, x < 20)

and 0 < y < 5;
• Number of elements: 100.

RESULTS AND DISCUSSION

In this work the air physical properties were conside-
red to be either constant or dependent on both tempera-
ture and concentration. When considered constant, the
physical properties were evaluated at TR = (Tw+T∞)/2
and CR = (Cw+C∞)/2. In this work, Nusselt and Sherwood
numbers are defined by Nu = hL/kT and Sh = hmL/D,
where L, the characteristic dimension, D is the cylinder
diameter, h is the convective heat transfer coefficient, and
hm the convective mass transfer coefficient.

Several test problems, extending from pure convection to
diffusive-convective non-linear flow re-circulation problems,
which included problems with Peclet numbers ranging from
0.1 to ∞ were tested. The results agreed with the ones avai-
lable in the literature and they are not presented hereby for
brevity. The following data on heat and mass transfer around
cylinders are presented not only for the purpose of applica-
tion of the model and analysis but also for further confirma-
tion of the methodology.

Not all simulated conditions are shown. Figures 3A and
3B show part of the results when constant properties were
assumed. In these figures, the results of this work were
obtained by means of the FEM. These data refer to drying
air at 80 °C, at an absolute humidity of 0.0099 kg of va-
por kg-1 of dry air; the cylinder surface temperature was
kept at 25 °C and at saturation. Other simulated results
involved lower drying air temperatures. As can be seen,
the numerical results do not differ from empirically cor-
related data obtained from Hilpert (cited by Incropera &
Witt, 1992) and Churchill (1977). The numerical simula-
ted results and Hilpert’s and Churchill’s data differ from

r
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Figure 2. Subdivision of the region around the cylinder
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T∞ = 80 °C (constant properties)
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Zhukauskas’ (cited by Incropera & Witt, 1992) empirically
correlated data. Simulated results for other temperatures
revealed analogous results.

Figures 4 to 6 show the numerical results obtained by
taking the thermodynamic and transport properties to be tem-
perature and air humidity dependent. The simulation results
are again compared against those obtained experimentally by
Zhukauskas (1972) and Hilpert (1933) (both cited by Incro-
pera & Witt, 1992) and Churchill (1977).

The simulation data show that:
• At lower surface and air temperatures, the physical

properties are practically constant and, consequently,
the numerical results for Nusselt and Sherwood
numbers approximate Hilpert’s and Churchill’s
experimental data. On the other hand, the numerical
results diverge somewhat from Hilpert and Churchill’s
and approximate Zhukauskas’ results for higher T∞
(Figures 4 and 5), due to the influence of the variable
thermo physical properties on the boundary layer
profiles.

• Figures 6A and 6B show that Nu and Sh increase as
Reynolds numbers increase. These figures also show
that, at temperatures higher than 40 °C, Nu and Sh
decrease significantly as the temperature increases, for

the same Re. This fact is, again, due to the variation
of the thermodynamics and transport properties.

CONCLUSIONS

1. This paper presents a segregated finite element me-
thod that is proven to be useful to solve convection-diffu-
sion problem. More specifically, the method was applied
successfully to solve the problem of low and high-rate mass
transfer along a biological horizontal cylinder so as to ob-
tain the associated transport coefficients. With respect to
this problem, the following conclusions were arrived at:

• The numerical results for Nusselt and Sherwood num-
bers agreed, within the associated experimental errors,
with available empirical data.

• For higher accuracy of the numerical results, tem-
perature and concentration dependent properties
have to be considered in the models, when higher
temperatures are at stake; otherwise appreciable di-
fference between numerical and experimental results
may result.

2. No effort has been made to simulate drying conditi-
ons involving wall convective mass fluxes. However, no
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restrictions were placed on the proposed methodology,
which can be expanded, by simply forcing the associated
boundary conditions to account for high rate mass trans-
port processes.
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