
Introduction

Probiotics are food or pharmaceutical preparations
containing live non-pathogenic microorganisms which
improve one of the three main beneficial functions (col-
onization resistance, immunomodulation or nutritional
contribution) of the normal gastrointestinal microbiota
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when ingested by human or animal hosts. For this rea-
son, most of the probiotics studied or commercialized
today has been selected from the digestive ecosys-
tem. However, some of these biotherapeutics were
also isolated from other non-intestinal sites. As an ex-
ample of this last case, Saccharomyces boulardii, a
non-pathogenic yeast, was isolated from lychee fruit in
East Asia grows at the unusually high temperature of
37°C (McFarland and Bernasconi, 1993). Pharmacoki-
netic studies have shown that it achieves steady-state
concentrations in the colon within 3 days when in-
gested and is cleared from stools 2–5 days after dis-
continuation (Bléhaut et al., 1989). It has been used
for treatment of different types of diarrheal diseases
such as antibiotic-associated diarrhea (Bartlett, 1992;
McFarland et al., 1995; Surawicz, 2003; Surawicz et
al., 1989a), Clostridium difficile-associated intestinal
disease (Castagliuolo et al., 1999; Elmer et al., 1999;
Kimmey et al., 1990; McFarland et al., 1994; Surawicz,
2003; Surawicz et al., 1989b, 2000), traveler’s diar-
rhea (Scarpignato and Rampal, 1995) and diarrhea in
HIV-infected patients (Born et al., 1993; Saint-Marc et
al., 1991).

Various mechanisms of action have been proposed
to explain S. boulardii protection (Czerucka and Ram-
pal, 2002). It was demonstrated that this yeast modu-
lates the immune system (Buts et al., 1990; Caetano
et al., 1986; Rodrigues et al., 2000), degrades C. diffi-
cile toxins A and B and their respective receptors on
colonic mucosa (Castagliuolo et al., 1996, 1999;
Pothoulakis et al., 1993; Qamar et al., 2001), inhibits
cholera toxin action (Brandão et al., 1998; Czerucka
and Rampal, 1999; Czerucka et al., 1989, 1994;
Neves et al., 2002), modulates the transduction path-
way induced by enteropathogenic Escherichia coli
(Czerucka et al., 2000), stimulates digestive enzymatic
activities (Buts et al., 1986; Jahn et al., 1996) and fixes
some enterobacteriaceae on its surface (Gedek,
1999).

At the moment, S. boulardii is practically the only
yeast commercialized as probiotic in human medicine.
However, other yeasts from ambiental or agroindustrial
origins with similar or even better biotherapeutic prop-
erties certainly exist, particularly considering the rich
biodiversity found in Brazilian microbial ecosystems.

The objective of the present study was to select
yeasts as probiotic using the survival capacity in the
gastrointestinal tract and the protective effect on ani-
mals during experimental infections as criteria.

Materials and Methods

Mice. Germ-free 21-day-old NIH mice (Taconic,
Germantown, NY, USA) were used in this work. The
animals were housed in flexible plastic isolators (Stan-
dard Safety Equipment Co., McHenry, IL, USA) and
handled according to established procedures (Pleas-
ants, 1974). Experiments with gnotobiotic mice were
carried out in micro-isolators (UNO Roestvaststaal
B.V., Zevenaar, The Netherlands). Conventional NIH
mice were derived from the germ-free colony and only
used after at least two generations following the con-
ventionalization. Water and commercial autoclavable
diet (Nuvital, Curitiba, PR, Brazil) were sterilized by
steam and administered ad libitum to all the animals.
Conventional mice were maintained in an open animal
house and controlled lighting (12 h light, 12 h dark)
was used for all the animals. All experimental proce-
dures were carried out according to the standards set
forth in the “Guide for the Care and Use of Laboratory
Animals” of the National Research Council (1996).

Microorganisms. The yeasts used in this work
(Table 1) belong to the Yeasts Bank maintained by Dr.
C. A. Rosa from the Laboratory of Ecology and
Biotechnology of Yeasts (Department of Microbiology,
Federal University of Minas Gerais, MG, Brazil). The
yeasts were characterized phenotypically by methods
currently used in yeast taxonomy (Yarrow, 1998). Iden-
tities were verified using the keys described by Kurtz-
man and Fell (1998), and also using the computer pro-
gram YEASTCOMPARE (Ciriello and Lachance, 2001)
which compares the nutritional characteristics of any
yeast with those of known species. The Salmonella
enterica subsp. enterica serovar Typhimurium of
human origin belongs to our laboratory and Clostrid-
ium difficile (American Type Culture Collection—ATCC
9689) was obtained from Fundação Oswaldo Cruz
(Fiocruz, Rio de Janeiro, RJ, Brazil).

Treatments. A single dose of 108 viable cells of
each S. cerevisiae strain was administered to germ-
free mice by intragastric intubation for colonization ex-
periments or 10 days before the experimental chal-
lenge with pathogenic bacteria. The same dose was
administered daily to conventional mice, 10 days be-
fore the challenge and during the entire experimental
period. The control conventional and gnotobiotic
groups were treated with 0.9% saline according to the
same schedule as the corresponding experimental
groups.
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Experimental infections. Salmonella Typhimurium
and C. difficile were grown in liquid Brain Heart Infu-
sion medium (Difco, Detroit, MI, USA) at 37°C during
24–48 h under aerobe or anaerobe (anaerobe cham-
ber Forma Scientific, Marietta, OH, USA, containing an
atmosphere of 85% N2, 10% H2 and 5% CO2) condi-
tions, respectively. Mice were inoculated by the oro-
gastric route with 0.1 ml of the bacterial suspension
containing 102 or 104 viable cells for gnotobiotic or
conventional mice, respectively.

Microbial counts. For colonization experiments,
feces freshly collected or contents from stomach, prox-
imal, median and distal small intestine, cecum and
colon of gnotobiotic and/or conventional NIH mice
were diluted 100-fold in saline and vortexed. Serial 10-
fold dilutions were made and 1 ml poured onto
Sabouraud Dextrose agar (Difco) supplemented with
100 mg/L chloramphenicol. For experiments with path-
ogenic challenge, 0.1 ml from serial dilutions was
plated onto McConkey agar (Difco) for S. Ty-
phimurium, Brain Heart Infusion supplemented with
yeast extract (0.5%), hemine (0.1%) and menadione
(0.1%) for C. difficile and Sabouraud Dextrose agar
(Difco) for S. cerevisiae and incubated at 37°C for
24–48 h for bacterial counts (under aerobe or anaer-
obe conditions depending on the bacteria) and
48–72 h for yeast counts. For bacterial or yeast
counts, media were supplemented with 100 mg/L cy-

cloheximide or 100 mg/L chloramphenicol, respec-
tively.

Experimental design. For experiments of coloniza-
tion and enteropathogenic challenge, each animal
group consisted of 5 and 10 mice, respectively. Popu-
lation levels of the pathogenic bacteria and of the
yeast in the feces and cumulative mortality were noted
during the challenge experiments. At the end of the ex-
periments, all remaining mice were sacrificed by cervi-
cal dislocation.

Histopathological and morphometrical examinations.
Tissue samples from intestines and liver of mice sacri-
ficed at the end of the experiments were fixed in
buffered 4% formaldehyde and processed for paraffin
embedding. The histopathological sections (3–5 mm)
were stained with hematoxylin-eosin. The slides were
coded and examined by a single pathologist, who was
unaware of the experimental conditions of each group.
For morphometric examination of the liver, the images
were obtained by a JVC TK-1270/RGB microcamera
and the KS 300 Software built into a Kontron Elektron-
ick/Carl Zeiss image analyser (Oberkohen, Germany).
The inflammatory foci were considered as a damage
index for hepatic tissue. Inflammatory focus is defined
as an accumulation of inflammatory cells in number
higher than 10 cells, accompanied by necrotic alter-
ations of the associated parenchyma. The unit of focus
area measured in all animals is the sum of ten camps
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Table 1. Yeast strains used in the present study.

Saccharomyces cerevisiae straina Micro-habitat

01 UFMG 20 Drosophilab

02 UFMG 21 Drosophilac

03 UFMG 22 Drosophilab

04 UFMG 23 Tropical fruitd

05 UFMG 24 Estuarye

06 UFMG 829 “Aguardente” productionf

07 UFMG 905 “Aguardente” productionf

08 UFMG 2105 “Aguardente” productionf

09 UFMG 2439 “Aguardente” productionf

10 UFMG 2469 “Aguardente” productionf

11 UFMG B99.32.9 Canastra cheeseg

12 UFMG CH4 Chironomideh

a All the strains were purified and characterized according to standard methods (Yarrow, 1998) and identified by the keys as de-
scribed by Kurtzman and Fell (1998) and Barnett et al. (1990). b Isolated from Tropical Forest, Brazil (Morais et al., 1992). c Isolated
from Tijuca Forest, Brazil (Morais et al., 1992). d Isolated from a small tropical fruit from Atlantic Rain Forest, Rio de Janeiro, Brazil.
e Isolated from estuary in Rio de Janeiro, Brazil. f Isolated from “cachaça” production in Minas Gerais, Brazil. g Isolated from cheese
production in Serra da Canastra, Brazil. h Isolated from fly larvae.



(10�).
Statistical analysis. The results shown are from

one representative of at least three independently per-
formed. Statistical significance of the results was eval-
uated by Student’s t test and analysis of variance
(ANOVA) for all data, except survival, for which the
Mann-Whitney Rank test was used. The level of signif-
icance was set at p�0.05. Statistical analyses were
performed using the programme Sigma Stat (Jandel
Scientific Software, version 1.0, San Rafael, CA,
USA).

Results

Results showed that there was some discrepancy
between in vitro assays and in vivo colonization of the
mammal gastrointestinal tract. The yeasts UFMG 20
and UFMG 22 presented a good resistance to simu-
lated exposure to bile salts and gastric and intestinal
environments (data not shown), but they were not ca-
pable of colonizing the digestive tract of germ-free
mice (Table 2). On the other hand, S. cerevisiae 905,
from “aguardente” (cachaça) production, presented the
best data in terms of viable intestinal populations
(Table 2) with fecal levels which never fell below
106 cfu/g, contrarily to all other tested yeasts. At the
end of the colonization experiment, mice monoassoci-
ated with S. cerevisiae 905 showed normal aspects at
histological examination of intestines and liver when
compared to control animals. For this reason, this

yeast strain was selected for the next experimental
steps.

Figure 1 shows the yeast population levels in the
contents of different portions of the gastrointestinal
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Table 2. Yeasts counts (log10 cfu/g of feces�SD) for 10 days in the feces of gnotobiotic mice after a single inoculum of 108 cells.

Time (days)
Strain

1 4 7 10

UFMG 20 0 0 0 0
UFMG 21 5.83�0.56 5.29�0.94 5.29�0.94 5.18�0.34
UFMG 22 0 0 0 0
UFMG 23 6.76�0.29 4.83�0.60 5.33�0.33 5.33�0.33
UFMG 24 6.92�0.14 5.26�0.37 6.11�0.41 5.86�0.09
UFMG 829 7.11�0.12 5.40�0.30 6.08�0.42 5.13�0.38
UFMG 905 7.62�0.13 7.20�0.13 6.15�0.12 6.17�0.79
UFMG 2105 7.05�0.44 5.10�0.48 5.98�0.20 5.79�0.10
UFMG 2439 7.18�0.23 5.15�0.19 5.59�0.08 5.82�0.11
UFMG 2469 7.48�0.28 5.83�0.62 5.99�0.11 5.58�1.07
UFMG CH4 7.39�0.22 5.75�0.81 5.69�0.19 6.08�0.33
UFMG B.99.32.9 6.44�0.11 5.12�0.15 5.12�0.15 6.07�0.56

N�5.

Fig. 1. Saccharomyces cerevisiae UFMG 905 population
levels in the stomach (I), proximal (II), median (III) and distal
(IV) small intestine, cecum (V) and colon (VI) of gnotobiotic (A)
and conventional (B) NIH mice.



tract of gnotobiotic (Fig. 1A) and conventional (Fig. 1B)
mice. Yeast populations increased all along the small
intestine and reached their highest levels in the final
portions of the digestive tract. These levels were
higher in conventional than in monoassociated mice.

Figure 2 shows that S. cerevisiae 905 became es-
tablished in the digestive tract of gnotobiotic mice 24 h
after the oral inoculation and the number of viable cells
ranged around 106 to 107 cfu/g of feces. The kinetics of
the establishment of S. Typhimurium and C. difficile in
the experimental and control gnotobiotic mice are also
shown in Fig. 2,A and B, respectively. In experimental
gnotobiotic mice harboring the yeast, the two bacteria
became established at levels of about 108–109 viable
cells/g of feces and remained at these high levels until
the animals died or were sacrificed. These levels were
equivalent to those observed in gnotobiotic mice har-

boring the bacteria alone.
Figure 3 shows survival of conventional NIH mice

treated or not with the yeast for 10 days and then chal-
lenged with S. Typhimurium. After 28 days of infection,
55% of the animals in the experimental group survived
versus 15% in the control group. This difference in sur-
vival was statistically significant (p�0.003). Histologi-
cal examination of liver from these groups corrobo-
rates the survival data. In conventional mice treated
with the yeast and challenged with S. Typhimurium a
better preservation of liver tissue was observed when
compared with mice not treated (Fig. 4). Additionally,
inflammatory infiltrate with higher numbers (p�0.0014)
of foci containing polymorphonuclear and mononuclear
cells was observed in control mice when compared to
experimental animals (Table 3). Under gnotobiotic con-
ditions, there was no difference in survival between
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Fig. 2. Fecal populations of Salmonella Typhimurium (A) and Clostridium difficile (B) in gnotobiotic NIH mice
treated (�) or not (�) with Saccharomyces cerevisiae UFMG 905 for 10 days before the challenge with the bacteria.

Fecal population numbers of Saccharomyces cerevisiae UFMG 905 (�). After challenge, the yeast was inoculated at
2 days intervals.



control and experimental mice challenged with S. Ty-
phimurium and all the animals died in 6 to 7 days (data
not shown).

Protective effect of the yeast against experimental
infection with C. difficile was observed in the colon and
cecum of gnotobiotic mice (Fig. 5). Experimental ani-
mals showed less intense lesions such as edema, in-
flammatory cell infiltrate and hyperemia. In conven-
tional animals, experimental challenge with C. difficile
is not possible due to the normal microbiota and its
strong colonization resistance effect.

Discussion

Theoretically, any non-pathogenic bacterium, fun-
gus, yeast or protozoan is a possible candidate for
probiotic use. However, the number and the diversity
of these microorganisms make the screening of bio-
therapeutic agents among them a very hard task. A
simple and efficient method for this selection is neces-
sary to process a very high number of microorgan-
isms. In vivo assays are time consuming and involve a
large number of animal groups and for these reasons
are used only after the selection of a limited number of
probiotic candidates. One procedure generally de-
scribed in literature is the in vitro screening based on
the capacity of a microorganism to survive to simu-

lated conditions found in the digestive tract since this
is indispensable for a probiotic to act. However, it is
not very clear if results obtained in in vitro experiments
can be always extrapolated to in vivo environments.

Very few yeasts have been studied as possible bio-
therapeutics and S. boulardii is one of the first and cur-
rently the only one commercialized in human medi-
cine. Other Saccharomyces spp. or members of other
yeast genera probably have probiotic activity similar to
that of S. boulardii or even better. Actually, some au-
thors have reported the use of some strains of S. cere-
visiae but in very few experimental and clinical trials
(Chia et al., 1995; Izadnia et al., 1998; Kovacs and
Berk, 2000; Schellenberg et al., 1994). As one of the
largest and most biodiverse countries in the world,
Brazil may provide a rich source of microorganisms for
potential probiotic use. In the present study, ambiental
and agroindustrial yeast strains isolated in Brazil were
tested as possible biotherapeutics for intestinal infec-
tions. Yeasts identified as S. cerevisiae were selected
because they are already known to be relatively safe
microorganisms that are genetically very close to S.
boulardii.

The microorganisms used as probiotics must con-
front a variety of simultaneous or sequential adverse
conditions such as mild heat shock (internal body tem-
perature), acidic gastric juice, basic pancreatic juice
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Fig. 3. Survival of conventional NIH mice treated (�) or not (�) with Saccharomyces cerevisiae UFMG 905 10
days before the challenge with Salmonella Typhimurium.

* p�0.003.



and the presence of lysozyme and bile salts. This
problem is particularly important when the probiotics
are not originally from the digestive tracts of mammals,
as is the case for Saccharomyces strains. In this con-
text, in vitro selection of probiotic microorganisms is
done by the exposure of microbial candidates to condi-
tions simulating the gastrointestinal conditions and de-
termination of their survival. In the present study,
twelve S. cerevisiae previously selected for their sur-
vival capacities under these in vitro conditions were
used for the in vivo steps.

Among the selected strains, those isolated from an
agroindustrial environment (“cachaça” production, a
typical “aguardente” from Brazil and cheese) showed
slightly better capacity to colonize and maintain high
population levels in the digestive tract of germ-free
mice, particularly S. cerevisiae 905 (Table 2). This fact
can be due to the higher resistance ability of these mi-
croorganisms developed in the more competitive con-
ditions found during the fermentation process. Using
these data, S. cerevisiae 905 was selected and tested
in gnotobiotic and conventional mice for its capacity to
colonize the various portions of the digestive tract and
to protect against oral challenge with enteropathogen
bacteria (S. Typhimurium and C. difficile).

The S. Typhimurium strain used in the present study
induces enteroinvasive disease both in germ-free and
conventional mice (Rodrigues et al., 2000). On the
other hand, C. difficile fails to multiply in the conven-
tional mouse intestine but establishes itself in the
germ-free animals. Yeasts are also drastically elimi-
nated or repressed from the digestive tract of mammal
host harboring a normal complex intestinal microbiota,

2005 Screening of yeast for probiotic use 89

Fig. 4. Histopathological aspect of liver from conventional
NIH mice not treated (A) or treated (B) with the yeast Saccha-
romyces cerevisiae 905 for 10 days and then challenged with
Salmonella Typhimurium.

Hematoxylin and eosin (100�). Arrows indicate inflammatory
focus.

Table 3. Number of inflammatory foci versus units of area in the liver of conventional NIH mice treated or not with the yeast Sac-
charomyces cerevisiae 905 for 10 days and then challenged with 104 cells of Salmonella Typhimurium for 28 days.

Group Number of inflammatory focia Area (units of area)b Focus/units of area

Control 25 8.7�106 mm2 25
20 8.7�106 mm2 20
31 8.7�106 mm2 31

Media 25.3*
Experimental 9 8.7�106 mm2 9

17 8.7�106 mm2 12
2 8.7�106 mm2 3

Media 8.0*

a Inflammatory focus is defined as accumulation of inflammatory cells in number higher than 10 cells, accompanied by necrotic al-
terations of the associated parenchyma. b The unit of area measured in all animals is the sum of ten camps for 10�. N�3 animals.
* p�0.014.



but its implantation is possible in germ-free animals.
For these reasons, the gnotobiotic mouse provides a
simplified in vivo system which allows the observation
of ecological interactions in the gastrointestinal tract
between microbial strains inoculated in this ecosys-
tem.

The terminal ileum is the primary site of S. Ty-
phimurium invasion while infection by C. difficile oc-
curs in the more lower portions of the digestive tract
(cecum and colon). To be efficient for protection, a pro-
biotic must be present viably and in high population
levels at the site of infection by enteropathogens. In
gnotobiotic as well as in conventional mice, S. cere-
visiae 905 reached populational levels potentially func-
tional in the gastrointestinal portions where each en-
teropathogen tested acts (Fig. 1). As expected, in both
gnotobiotic and conventional animals higher popula-
tions of the yeast were observed in the cecum and
colon when compared to the small intestine where
peristalsis is faster. Curiously, the yeast populations
were higher in all portions of conventional animals
when compared to gnotobiotic mice. This was proba-
bly due to the daily dose administered to conventional
mice instead of a unique initial dose used in gnotobi-
otic animals.

The yeast was not capable of protecting the mice
against the oral challenge with S. Typhimurium when
the normal microbiota was absent. Nevertheless, it ap-
pears that it may contribute to a complementary pro-
tection (in hosts with perturbed or impaired intestinal
microbiota, for example) as can be seen observed by
the lower mortality (Fig. 3) and the good preservation
of liver tissue (Table 3) of conventional mice treated
with the yeast and challenged with S. Typhimurium.
These results were similar to those obtained by Ro-
drigues et al. (2000) under the same experimental
conditions. The data suggest that the yeast may inhibit
or reduce translocation by this pathogen and the com-
parison of the number of inflammation foci in the liver
reinforces this hypothesis (Table 3).

Better preservation of the lower intestinal tract was
observed after oral infection with C. difficile in gnotobi-
otic mice treated with the S. cerevisiae 905 when com-
pared with the control group (Fig. 5). This protective
effect against C. difficile has already been observed by
many authors utilizing S. boulardii (Castagliuolo et al.,
1996; Castex et al., 1990; Corthier et al., 1986, 1992;
Czerucka et al., 1991; Elmer and Corthier, 1991;
Pothoulakis et al., 1993) and a strain of S. cerevisiae
(Izadnia et al., 1998).
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Fig. 5. Histopathological aspect of colon (A and C) and cecum (B and D) from gnotobiotic NIH mice monoassoci-
ated (C and D) or not (A and B) with the yeast Saccharomyces cerevisiae 905 for 10 days and then challenged with
Clostridium difficile.

Hematoxylin and eosin (40�). Arrows indicate edema areas.



Antagonism by inhibitory compound production is
one of the hypothesis more frequently used to explain
probiotic acts against enteropathogenic microorgan-
isms. A growth inhibition of several pathogenic bacte-
ria by S. boulardii has been described, only in vitro
(Brugier and Patte, 1975). The protection against S.
Typhimurium and C. difficile obtained in mice previ-
ously associated or treated with the yeast is not due to
the reduction of the bacterial populations in the in-
testines (Fig. 2). This result was similar to that previ-
ously observed in vivo with S. boulardii (Rodrigues et
al., 2000). Some other properties could explain the
protective effect against the enteropathogenic bacteria
such as immunomodulation, modulation of toxin pro-
duction or action and competition for adhesion sites or
nutrients in the presence of the yeast. Experiments
based on these hypothesis are currently being carried
out in our laboratory to explain the protective phenom-
enon observed with S. cerevisiae 905.
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