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The energy levels of the semiconductors PbS, PbSe, PbTe, SnTe, and GeTe are calculated 
by an empirical pseudo-potential method at the points of highest symmetry of the Brillouin 
zone. A 3-parameter effective-potential model employing "square wells" around the atoms 
and repulsive delta functions at the sites of the nuclei is used in the calculation. The pseudo- 
-wave-functions are expanded in a series of symmetrized plane waves. The potential parameters 
are fitted to obtain energy differences which are equivalent to the experimentally obtained 
optical transitions of the five semiconductors. The purpose of the present work is to show 
the effectiveness of a new method for parametrizing the pseudo-potential which is analogous 
to the Kronig-Penney model. 

Os níveis de energia dos semicondutores PbS, PbSe, PbTe, SnTe e GeTe são calculados, nos 
pontos de maior simetria da zona de Brillouin, pelo método do pseudo-potencial empirico. 
É usado no cálculo um modelo de potencial efetivo a três parâmetros com "poços quadrados" 
em torno dos átomos e funções delta repulsivas nas posições dos núcleos. As pseudo-funções 
de onda são expandidas em série de ondas planas sirnetrizadas. Os parâmetros do potencial 
são ajustados de modo a se obter diferenças de energia que são equivalentes as transições 
ópticas, obtidas experimentalmente, dos cinco semicondutores. O objetivo do presente tra- 
balho é mostrar a eficácia de um novo método de parametrização do pseudo-potencial que 
é análogo ao modelo de Kronig-Penney. 

1. Introduction 

The Kronig-Penney potential was the first used in energy-band calcula- 
tions because of its simplicityl. Improved results were obtained later by 
the pseudo-potential method2,  which leads to Phillips cancel- 
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lation theorem3. A cisadvantage of the latter method, however, is the 
necessity of construc.ing the effective potential by fitting three to tive 
coefficients of its Foiirier transfonn to the experimental data available. 
This procedure results in a loss of the physical picture of the crystal poten- 
tial. A method that uses a modified Kronig-Penney model to construct 
the effective potential is here described. The essential idea, suggested by 
an analysis of Phillips' cancellation theorem, is the addition of a repulsive 
Dirac delta function to each "square-weli" for each type of atom in the 
crystal. This effective potential has been used4 for a number of semicon- 
ductors and showed that the abrupt changes due to the "square-wells" 
makes the convergente of the secular equation rather slower for emptier 
lattices, such as those of ZnS type. 
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Fig. 1 - Poiential wells with Dirac delta in the [IWj direction 

The IV-VI compounds PbS, PbSe, PbTe, SnTe, GeTe are semiconductors 
which have the NaC1 structure. The fundamental gap occurs at the L 
point of the Brillouin zone or close to it. From experimental and theoretical 
r e ~ u l t s ~ , ~ , '  we can asscrt that these semiconductors show similar proper- 
ties. For example, the optical transitions are related to the lattice parameters 
in a simple manner. l'herefore, these semiconductors can be assumed to 
have similar band structures. The purpose of the present work is to obtain 
the optical transitions for these iive semiconductors with the empirical 
pseudo-potential method applied to the T, L and X points of the Brillouin 
zone. An expansion cf the pseudo-wave function in symmetrized plane 
waves and a 3-parameler effective potential are used. The latter is obtained 
by surrounding each atom with a constant-potential sphere and consi- 
dering a Dirac delta pulse of repulsive potential at the center of each 
sphere. 

The effective potentia model is defined and the matrix of the effective 
Hamiltonian for the points of highest symmetry of the Brillouin zone js 



calculated in Section 2, using symmetrized plane waves. In Section 3 we 
explain the calculation procedure for the energy levels and the method 
used in the search for effective potential parameters able to reproduce 
the optical transitions of each compound. 

2. The Effective Potential 

The pseudo-potential m e t h ~ d  permits us to write the Schrodinger equation 
for an electron in a crystal 

r- v2 + V(r)l*(r) = E*(r) (1) 

Thus, the energy levels can be determined using smooth pseudo-functions 
4(r) .  These can be expanded in a series of symmetrized plane waves, after 
factoring the secular equation. 

We define 

km = k + K,, 

where k refers to the Brillouin zone or to its boundaries and Km is a reci- 
procal-lattice vector. 

The pseudo-function $;,$(r) can be written as 

where the normalized symmetrized plane waves are given by 

I k,, j) = a- 312 ( G m ,  j )112  (dlh) Ta(R,)$ R,  exp (ik, . r), 
A 

( 5 )  

a is the lattice parameter, is a normalization constant, d is the 
dimension of the irreducible representation Ta of the group of the vector 
k, h is its dimension and Ta(R,)$ is the complex conjugate of the (v) element 
of the matrix for the R,  operation of the group. 



2.1. Criterion for Choosing the Orthogonal Symmetrized Plane Waves 

Let us consider 

1, = (d/ h) r, (R,): exp [i(RÃ k, - k,) , r] dr 
2 

(6) 

which is prop~rt ion~il  to the matrix element (k,, ilk,,j). Let 

R = AX, (7) 

where X belongs to :he {X) sub-group for which Xk, = k, and Ak, = k,. 
Then 

Iij = (dlh) C r,(X)$. 
X 

(8) 

If k, gives rise to 1 four-vectors (1 < 1 < d), we can choose for the 0, group 
and its sub-groups the four-vectors in such a way that 

lij cc aij .  (9) 

In the case 1 = d it is easy to show that the four-vectors are orthogonal, 
so that we can wri.e 

(km, iIk,J) = a(lkm, 0 ,  1 k l l . i ) ) $  (10) 

a fact which simp1i:ies the calculations. 

2.2. The 3-Parameter Effective Potential 

We define an effective potential for the IV-VI semiconductors by consi- 
dering "square-wells," surrounding the atoms inside spheres E which just 
touch one another, plus a positive potential pulse at each nucleus (see 
Figure 1). Since thesi: semiconductors have a NaCl structure, and assuming 
atom IV to be at tlie origin, then 

in atom IV: V, (r) = V,, + v,, a3 &(r), r I a/4, (lia) 

in atom VI : V, (r) = V,,, + v, a3 6[r - (a/2)(i + j + k)], a/4 5 r  a/2, 
(1  1b) 

and V(r)  = O, in tlle rest of the cell. (1 14  



To reduce these four parameters to three, we define the dimensionless 
average radius as 

S. r V ( r )  dr 

P = T/U = (lla) (12) 

and impose the condition of equal average radii on the two atoms in 
the cell: 

For convenience, we introduce 

v0 = (V,, + V&, 
b = (5" - Vn)/2%, 

the parameters being now V,, b, P .  V, is the "intensity" of the effective 
potentíal given in Rydbergs and b ís the "ionicity" of the crystal and is 
dimensionless. 

If atom IV is at the origin, atom VI is at position r, = (a/2)(i + j + k). 
We can write the matrix element of the effective Hamiltonian between 
four-vectors r and s as 

where j,(x) is the spherical Bessel function and 

Q = k,-R,k,. 

In order to show the dependence on a (lattice parameter), we use the reduced 
potential parameter 

Vrd = (a/a,)' V,, (18) 

where a, = 10 atomic units. Then, the reduced energy eigenvalues given by 

AEled = ( a / ~ , ) ~  AEexp (19) 

are obtained. 



3. Discussion and Results 

The convergence of the eigenvalues has been tested by considering, for 
a given set of parameters, matrices with dimensions 5, 10, 15 and 20. For 
the lowest energy eingenvalues, a satisfactory convergence has been 
obtained. 

In the calculations we only considered the following irreducible repre- 
sentations: 

L,, L;, L,,, Lj, r , ,  r , , ,  r;,, X, ,  X3, Xi and X;. 
The others are irrellwant because the wave vector of their four-vectors 
have relatively largc: moduli giving rise to very high energy levels, far 
beyond the region of interest. 

AI1 theoretical and eitperimental results on these compounds indicate that 
the gap E, between the valence and the conduction bands is direct and 
occurs at the L point of the Brillouin zone, or near to it5,738. 

For PbS, PbSe and PbTe, the top of the valence band is generally attri- 
buted to L, (2), that is, to the second lowest leve1 of the irreducible repre- 
~ e n t a t i o n ~ . ~ . ~  L,. Tlie bottom of the conduction band is generally attri- 
buted to G(2)6,9310 or to &(I).  These three levels are very close in energy. 

For SnTe and GeTe the top of the valence band is almos always attributed 
to L',(2) and the bottom of the conduction band to L, (2)7310.119'2. This 
establishes a schemc for band inversion between (PbS, PbSe, PbTe) and 
(SnTe, GeTe). Again, the levels L,(2), E,(2) and E3(1) are close together. 

The experimental d.ita upon which we have based our calculations are 
those of Ref. 5. For the experimental value of the gap we have used the 
data of Refs. 7, 10, 11, 13. 

Table I shows the parameter values which successfully simulated the 
semiconductors under study. 

Semiconductor a(g, Vred 

o ( R ~ )  v ~ m v )  
b " l k ( K , ,  k , f , K , ,  

PbS 5.9L. - 2.250 - 1.786 0.121 0.1945 - 2.002 - 1.570 
PbSe 6.1:! -2.150 - 1.608 0.120 0.1932 - 1.801 - 1.415 
PbTe 6.3~1 - 2.140 - 1.491 0.100 0.1900 - 1.640 - 1.342 
SnTe 6.3:! -2.025 - 1.420 0.095 0.1887 - 1.555 - 1.285 
GeTe 6.00 - 1.850 - 1.441 0.102 0.1893 - 1.588 - 1.294 

Table 1 - Values of the parameters for the semiconductors 



In Tables I1 and I11 we compare our theoretical results with the experi- 
mental values. 

From Tables I1 and I11 one can see that the transitions for PbS, PbSe, 
PbTe are of the same kind. For SnTe the only difference occurs in tran- 
sition E,, and in GeTe it was not possible to determine the transition 
responsibie for the experimental value E,. It is probable that this transition 
occurs at a point of lower symmetry. We have found no experimental 
value for the E ,  transition of GeTe in the literature. Nevertheless, assuming 
that it exists (approximately equal to the E, transition for SnTe), it could 
be simulated by the difference Lt2(2)- L,(2).  Transitions E,  and E, of 
GeTe are of the same kind as the transitions E, and E, of the other semi- 
conductors. 

The agreement with experimental data is satisfactory, especially for the 
lower gaps. The E, and E, gaps for PbS, PbSe, PbTe and GeTe, as well 
as the E,  gap' for the SnTe, are very sensitive to small variations in the 

PbS PbSe PbTe Transitions 
gap 

exp. theor. exp. theor. exp. theor. 

a) see Ref. 5. 

Table I1 - Theoretical and experimental values of the transitions (Energies in Rydbergs). 



p parameter. If we increase p, E, decreases and E, increases, thus improving 
E, and worsening E,,. As higher gaps are less reliable, we preferred to fit 
E,, keeping also in mind that the semiconductor properties are directly 
related to the naturí: of the fundamental gap. 

gaP SnTe Transitions GeTe Transitions 

exp. thcor. exp. theor. 

E, 0.022 C 0.119 L I 3 (  - ( 2  0.015 b 0.007 U3(1) - L1(2) 

0.066 a 
E 1 to 0~174 L'(2) - L1(2) - 0.064 Li(2) - L,(2) 

0.071 a 

E, 0.544 a 0.532 ( I )  - F 1  0.456 a 0.464 X3(l) - Xi(1) 

a) see Ref. 5; b) see Rrf. 7; c) see Refs. 11,9, 13 

Table I11 - Theoretical aiid experimental values of the transitions (Fnergies in Rydbergs). 

The principal result of this work is the reproduction, with a simple effec- 
tive-potential model, of the optical transitions of five semiconductors. 

Energy band calculations based on this simple effective potential deve- 
loped in Fourier seri1:s for seventeen semiconductors are now in progress. 

We wish to thank Dr. L. G. Ferreira for stimulating discussions. 
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