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The energy levels of the semiconductors PbS, PbSe, PbTe, SnTe, and GeTe are calculated
by an empirical pseudo-potential method at the points of highest symmetry of the Brillouin
zone. A 3-parameter effective-potential model employing "'square wells” around the atoms
and repulsive delta functions at the sites of the nuclei is used in the calculation. The pseudo-
-wave-functions areexpanded in aseries of symmetrized plane waves. The potential parameters
are fitted to obtain energy differences which are equivalent to the experimentally obtained
optical transitions of the five semiconductors. The purpose o the present work is to show
the effectiveness o a new method for parametrizing the pseudo-potential which is analogous
to the Kronig-Penney model.

Os niveis de energia dos semicondutores PbS, PbSe, PbTe, SnTe e GeTe sdo calculados, nos
pontos de maior simetria da zona de Brillouin, pelo método do pseudo-potencial empirico.
E usado no calculo um modelo de potencial efetivo a trés pardmetros com " pogos quadrados”
em térno dos &tomos e fungdes delta repulsivas nas posigdes dos nucleos. As pseudo-funcdes
de onda s8o expandidas em série de ondas planas simetrizadas. Os parémetros do potencial
sdo ajustados de modo a se obter diferencas de energia que sdo equivaentes as transicoes
Opticas, obtidas experimentalmente, dos cinco semicondutores. O objetivo do presente tra-
balho é mostrar a eficacia de um névo método de parametrizacdo do pseudo-potencial que
¢ andlogo ao modelo de Kronig-Penney.

1. Introduction

The Kronig-Penney potential was the first used in energy-band calcula-
tions because of its simplicity'. Improved results were obtained later by
the pseudo-potential method?, which leads to Phillips cancel-
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lation theorem3. A cisadvantage o the latter method, however, is the
necessity of construciing the effective potential by fitting three to five
coefficients of its Foiirier transform to the experimental data available.
This procedure results in a loss of the physical picture o the crystal poten-
tial. A method that uses a modified Kronig-Penney model to construct
the effective potential is here described. The essential idea, suggested by
an analysis of Phillips' cancellation theorem, is the addition o a repulsive
Dirac delta function to each “square-well” for each type o atom in the
crystal. This effective potential has been used* for a number of semicon-
ductors and showed that the abrupt changes due to the "square-wells"
makes the convergence of the secular equation rather slower for emptier
lattices, such as those of Z»S type.
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Fig. 1 - Potential wells with Dirac delta in the {100} direction

The IV-VI compounds PbS, PbSe, PbTe, SnTe, GeTe are semiconductors
which have the NaCI structure. The fundamental gap occurs at the L
point o the Brillouin zone or closeto it. From experimental and theoretical
results®>®7 we can asszrt that these semiconductors show similar proper-
ties. For example, the optical transitions are related to the lattice parameters
in a simple manner. Therefore, these semiconductors can be assumed to
have similar band structures. The purpose o the present work is to obtain
the optical transitions for these five semiconductors with the empirical
pseudo-potential method applied to the I', L and X points of the Brillouin
zone. An expansion cf the pseudo-wave function in symmetrized plane
wavesand a 3-parameler effectivepotential are used. The latter is obtained
by surrounding each atom with a constant-potential sphere and consi-
dering a Dirac delta pulse o repulsive potential at the center o each
sphere.

The effective potentia model is defined and the matrix o the effective
Hamiltonian for the points of highest symmetry o the Brillouin zone is
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calculated in Section 2, using symmetrized plane waves. In Section 3 we
explain the calculation procedure for the energy levels and the method
used in the search for effective potential parameters able to reproduce
the optical transitions of each compound.

2. The Effective Potential

The pseudo-potential method permits us to write the Schrodinger equation
for an electron in a crystal

[- V2 + VIOly() = Ey() (1)
as

[- V2 + Vo, (]$() = E¢(x). @

Thus, the energy levels can be determined using smooth pseudo-functions
¢(r). These can be expanded in a series of symmetrized plane waves, after
factoring the secular equation.

We define
k,=k TK,, (3)

where k refers to the Brillouin zone or to its boundaries and K, is a reci-
procal-lattice vector.

The pseudo-function ¢;,(r) can be written as
?j,‘.\(r) = Zcimlkm7 .]>> (4)

where the normalized symmetrized plane waves are given by

ks §) = 0722 (G, ) @H ETLRYER, oK, 1), O

a is the lattice parameter, C§ ; is a normalization constant, d is the
dimension of the irreducible representation I', of the group o the vector
k, hisitsdimension and I, (R,)# is the complex conjugate of the (i) element
of the matrix for the R, operation o the group.



2.1. Criterion for Choosing the Orthogonal Symmetrized Plane Waves

Let us consider

I; = (d/h) ) Fa(Rz)?}j expliR;k,, —k) .r] dr (6)

cell

which is proportional to the matrix element <k,,,i|k,.j>. Lét
R = AX, (N

where X belongs to :he {X) sub-group for which Xk, =k, and Ak, =k,
Then

Iij = (d/h)zra(X)?;" (8)

If k,, givesrise to ! four-vectors (I < 1 < d), we can choose for the 0, group
and its sub-groups the four-vectors in such a way that

I; oc 6. )

In the case 1= d it is easy to show that the four-vectors are orthogonal,
so that we can wrie

<km,l.kn,_]> == 5(lkmal>9 iknl>)’ (10)

a fact which simplifies the calculations.

2.2. The 3-Parameter Effective Potential

We define an effective potential for the 1V-VI semiconductors by consi-
dering “square-wells” surrounding the atoms inside spheres e which just
touch one another, plus a positive potential pulse at each nucleus (see
Figure 1). Since these semiconductors have a NaCl structure, and assuming
atom 1V to be at the origin, then

in atom IV: V,(r) = ¥, T u,a%8(), ! <a/4, (11a)

in atom VI: V, (r) = ¥y, T o83 [r-(a/2)i Tj+K)], a/4 <r < a2,
(11b)

and V(r) =0 in the rest of the cell (I1lc)
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To reduce these four parameters to three, we define the dimensionless

average radius as
J rV(r)dr
 S— (12)

p =7*a=(1/a)
J‘ V(r)dr

£

and impose the condition of equal average radii on the two atoms in
the cell:

Prv = 5V1- (13)

For convenience, we introduce
Vo = Vv + Vip)/2, (14)
b = (Viy - Vin)/2V, (15)

the parameters being now V, b, p.V, is the "intensity” of the effective
potential given in Rydbergs and b is the "ionicity" of the crysta and is
dimensionless.

If atom 1V is at the origin, atom VI is at position r, = (¢/2)(i + ] + k).
We can write the matrix element of the effective Hamiltonian between
four-vectors r and s as

Hrs = kfé((kn’l>’ (km’j>) + (Clzkn,i ’ Ckm.j)!/z(d/h) VO X
X ;ra(Rl)?‘j{[l +exp (iIQ 'rg)] - b[1-exp (IQ 1o)]} x  (16)

x {(n/3 x 4%)3/p - 16) + (n/16)j, (Qa/4)/(Qa/4)},

where j, {x) is the spherical Bessd function and
Q = kn_lem' (17)

In order to show the dependence on a (lattice parameter), we use the reduced
potential parameter

Ve! = (a/ag) Vs, (1)
wherea, = 10 atomic units. Then, the reduced energy eigenvalues given by
AE™ = (a/a,)? AE,,, (19)

are obtained.
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3. Discussion and Results

The convergence of the eigenvalues has been tested by considering, for
a given set of parameters, matrices with dimensions 5, 10, 15 and 20. For
the lowest energy cingenvalues, a satisfactory convergence has been
obtained.

In the calculations we only considered the following irreducible repre-
sentations:

L,, Ly, L., L, Ty, I'ys, Ths, X;, X5, X, and X5.
The others are irrelzvant because the wave vector o their four-vectors
have relatively large: moduli giving rise to very high energy leves, far
beyond the region of interest.

All theoretical and experimental results on these compounds indicate that
the gap E, between the vaence and the conduction bands is direct and
occurs at the L point of the Brillouin zone, or near to it>7%.

For PbS, PbSe and PbTe, the top o the valence band is generally attri-
buted to L, (2), that is to the second lowest level d the irreducible repre-
sentation®%? L,. The bottom o the conduction band is generally attri-
buted to L} (2)%°1° or to L;(1). These three levels are very close in energy.

For SnTeand GeTe the top o the valence band is amos always attributed
to L,(2) and the bottom o the conduction band to L, (2)"*%!*'2. This
establishes a scheme: for band inversion between (PbS, PbSe, PbTe) and
(SnTe, GeTe). Again, the levels L,(2), L,(2) and L,(1) are close together.

The experimental data upon which we have based our calculations are
those d Rd. 5. For the experimental vaue o the gap we have used the
data of Refs 7, 10, 11, 13.

Table | shows the parameter vaues which successfully simulated the
semiconductors under study.

Semiconductor  agg, V’oe(iy) Vow‘ b p Y Wi
PbS 5.9¢ -2.250 - 1.786 0121 0.1945 -2002 -1570
PbSe 6.1% -2.150 -1.608 0120 0.1932 -1801 -1415
PbTe 63¢  -2140 -1491 0100 01900 1640 —1342
SnTe 6.32 -2.025 -1.420 009 0.1887 -1555 —1285
GeTe 6.00 - 1.850 -1441 0.102 0.1893 1588 -1.294

Table 1 - values of the parameters for the semiconductors

72



In Tables II and IIT we compare our theoretical results with the experi-
mental values.

From Tables 11 and III one can see that the transitions for PbS, PbSe,
PbTe are o the same kind. For SnTe the only difference occurs in tran-
sition E,, and in GeTe it was not possible to determine the transition
responsible for the experimental value E,. It is probable that this transition
occurs at a point o lower symmetry. We have found no experimenta
valuefor the E, transition of GeTe in the literature. Nevertheless, assuming
that it exists (approximately equal to the E, transition for SnTe), it could
be simulated by the difference L,(2)—L,(2). Transitions E, and E, o
GeTe are of the same kind as the transitions E, and E, o the other semi-
conductors.

The agreement with experimental data is satisfactory, especialy for the
lower gaps. The E, and E, gaps for PbS, PbSe, PbTe and GeTe, as well
as the E, gap for the SnTe, are very sensitive to small variations in the

PbS PbSe PbTe Transitions
gap
exp. theor. exp. theor. exp. theor.
Eo 0.022a 0013 a 0.015a
to 0.023 to 0.019 to 0021 - LyDH-L,Q2
0.027 a - 0019a 0.021a
0.135a 0.113a 0.091a
E, to 0.134 to 0.112 to 0.091  L5y(2)-L,(2)
0.143a 0.117a 0.093a
0.235a 0.185a 0.145a
E, to 0.245 to 0.216 to 0.167 Li(1) - Ly(1)
0270 a 0229a 0.180a
0.368 a 0.323a 0.245a
Es to 0.356 to 0.309 to 0.238 L3(2)-L,(1)
0.390 a 0.342a 0.257a

E, 0.595a 0.570 0.522a 0.516 0463a 0473 X5(1)-X5(1)

E. 07202 0672 0669a 0609 0573a 0556 Ths(1)-T,s(1)

Eg 1.022a 0.919 0919a 0.852 0.823a  0.788 L3(2)-Ls(1)

a) see Ref. 5.
Table IT - Theoretica and experimental values of the transitions (Energies in Rydbergs).
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p parameter. If weincreasep, E, decreasesand E, increases, thusimproving
E, and worsening E,,. As higher gaps are less reliable, we preferred to fit
E,, keeping also in mind that the semiconductor properties are directly
related to the naturi: o the fundamental gap.

gap SnTe Transitions GeTe Transitions

exp. theor. exp. theor.

E, 0022c 0119 Lyn-( 2 0015b 0007  Li(1)-L,2)

0.066a
E, to 0974  Ly(2)-L,(2) - 0064  Ly@)-L,(2)
0.071a

0.134 a
E, to 0.149 Li(1)-Ly(1) 0.146 a 0.157 L5(1)-Ls(1)
0.152a

0223 a
E, to 0.204  Ly2)-Ly(1) 0.235a 0214  Ly()-Ly(1)
0235a

E, 0448a 0452  X,(1)-Xi(D) 0397 a - -

E, 0544a 0532 T[,i(1)-T,s(1) 0456a 0464  X,(1)-Xi(1)

B, 0669a 0546 LyQ2)-L,(2) 0573a 0548  Ths(l)—Tys(1)

a) see Ref. 5; b) see Rrf. 7; ¢) see Refs. 11,9, 13
Table III - Theoretical and experimental values of the transitions (Fnergies in Rydbergs).

The principal result of this work is the reproduction, with a simple effec-
tive-potential model, o the optical transitions d five semiconductors.

Energy band calculations based on this simple effective potential deve-
loped in Fourier serizs for seventeen semiconductors are now in progress.

We wish to thank Dr. L. G. Ferreira for stimulating discussions.
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