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Abstract

The design of artificial neural networks is still largely performed by an expert, with only

a few heuristics to guide a trial-and-error search. Recently, new methods based on evolu-

tionary computation (EC) have been applied to the synthesis of artificial neural networks

with modest results. The basic limitation of EC-based methods is that they do not take

into account the fact that artificial neural networks are two-dimensional structures, and do

not use specialized evolutionary operators. In this work, a new method based on a special

form of evolutionary computation called genetic algorithms is proposed for the evolution of

artificial neural networks. The method is a general purpose procedure able to evolve feed-

forward and recurrent architectures. It is based on a two-dimensional representation, and

includes operators to evolve the architecture and the connection weights simultaneously.

The new approach has shown promising results, and has fared better than previous meth-

ods in a number of applications, including: binary classification problems, design of neural

controllers and a complex navigation task of traversing a trail. An extension of the two-

dimensional representation is also presented, which can be combined with other methods,

providing them with an alternative procedure to evolve the weights of the connections.



Chapter 1

Introduction

Artificial neural networks (ANNs) are a class of computational tools inspired by the biolog-

ical nervous system [77]. They consist of partially or fully interconnected simple process-

ing units, calledneurons. ANNs derive their power from a parallel distributed structure,

and from their ability to learn underlying relations from a given set of representative ex-

amples, instead of following a predefined set of rules. The connections between units have

weights, which must be adjusted through a training process, to solve a particular problem.

Artificial neural networks have been successfully applied to a number of problems in many

areas including science and engineering [49]. However, the training process as well as

the performance of the artificial neural network are strongly influenced by its architecture.

Unfortunately, the space of ANNs to solve a specific problem is infinite and complex, and

there is no general purpose, reliable, automatic method to search this space. This task is

still largely performed by an expert, in a laborious process of trial-and-error definition of

the architecture, combined with a training process to adjust the weights.

Evolutionary computationis a class of global optimization techniques also inspired by bi-

ology [50]. Evolutionary algorithms are computational tools based on the collective learn-

ing process of a population of individuals, where each individual is a trial solution to a

given problem. This population is randomly initialized, and then evolved, by means of the

1



repeated application of evolutionary operators. These operators are biased to favor individ-

uals with better performance in the task at hand. As a result, a new population with better

performance is created at each generation, to explore the space of trial solutions. Ideally,

this process will eventually converge to a solution.

The ability of evolutionary algorithms to search large and complex spaces has been demon-

strated in a wide range of tasks [11]. As a consequence, they seem to be natural candidates

to methods for designing artificial neural networks.

Genetic algorithms(GAs) are a form of evolutionary computation which strongly empha-

sizes recombination as the main drive of evolution [80, 63]. GAs have been combined with

ANNs in three major forms: for adjusting the weights, for optimizing the architecture, and

for performing both simultaneously.

In the first case, the role of GAs is to adjust the weights of a given architecture, replacing a

conventional training procedure [77]. Many times conventional training algorithms can not

be applied or, due to the peculiarities of the search space or of the architecture, training by

GAs may be more efficient. The problem of using GAs to optimize the weights is that the

topology must be known in advance or must be constructed using other methods.

In the second case, genetic algorithms are used to evolve a suitable architecture to the

problem at hand. This is carried out by using a conventional procedure for training the ar-

chitectures at each generation. This combination has been fairly successful. Unfortunately,

the computational cost involved in training an entire population of architectures at each

generation is prohibitive.

The most ambitious combination attempts to evolve the architecture and the weights simul-

taneously without a separate training process. However, until now, this combination has

yielded modest results. The main reason for this is that the efficiency of genetic algorithms

is considerably affected by the mechanism used to encode the individuals of the popula-

tion. To be efficient, it is of paramount importance to use a suitable representation for the

architecture and the weights. Most previous methods based on genetic algorithms do not

2



take into account the fact that artificial neural networks are two-dimensional structures, and

do not use evolutionary operators specifically designed to evolve ANNs. They either con-

vert the artificial neural network into a form suitable for the application of standard GAs

operators, or transfer the search into a space of rules for constructing ANNs.

In this work, a new method is presented, which is based on a two-dimensional represen-

tation very similar to the artificial neural network itself. The method has considerable

advantages over previous ones, as it allows the definition of evolutionary operators spe-

cialized to evolve the architecture and the weights concurrently. The thesis is organized as

follows.

In Chapters 2 and 3, an introduction to artificial neural networks and evolutionary compu-

tation is given in order to introduce the problem to be addressed, and to provide the basic

terminology for the method proposed.

In Chapter 4, a discussion of representative achievements of genetic algorithms applied to

the evolution of artificial neural networks is carried out in the form of a literature review.

The drawbacks of previous methods as well as the lessons which can be learned from them

are discussed.

In Chapter 5, on the grounds of the lessons learned in Chapter 4, a new method is pro-

posed to the synthesis of artificial neural networks based on genetic algorithms. The new

representation and a new specialized crossover operator are introduced.

In Chapter 6, experimental results on the application of the method to standard benchmark

problems are reported, and its efficiency is compared to other approaches.

In Chapter 7, an extension of the method is proposed, which uses genetic programming

(a special form of genetic algorithms) to evolve the weights. Results are reported on the

application of the approach to the same problems discussed in Chapter 6.

Finally, in Chapter 8, a summary of what has been achieved in the thesis is presented,

and outlines for future research are discussed, including the combination of the approach

proposed in Chapter 7 with other methods to evolve artificial neural networks.

3



Chapter 2

Artificial neural networks

2.1 Introduction

Artificial neural networks, or simply networks for brevity, are computational tools inspired

by the biological nervous system. They are systems of partially or fully interconnected

simple processing units, called neurons. [78, 77, 177, 103].

The neuron is usually a nonlinear unit that receives input signals from other units or from

the environment (the space of input data relevant to the problem at hand), yielding an

output. The signals received by a neuron are modulated by real numbers calledconnection

weights(or simply weights). The total input of a neuron is obtained by adding an activation

threshold (bias) to the weighted sum of the signals received. The output signal of a neuron

is computed by the application of anactivation functionto its total input. Typical activation

functions include: a step function, a sigmoid, a Gaussian function, or even more than one

type of activation function can be used in the network [77, 168].

Artificial neural networks derive their power from a parallel distributed structure, capable

of generalization and learning by examples, instead of following a predefined set of rules.

They can learn underlying rules (like input/output relations) from a given collection of

representative examples. ANNs may also be visualized as oriented graphs, where the nodes
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of the graph are occupied by neurons, and the links between nodes represent connections

between neurons.

According to the connectivity pattern and the direction of signal propagation, artificial

neural networks can be grouped into two classes [85]:

• feedforward, in which the neurons are evaluated in order, and there are no connec-

tions from higher order neurons to lower order ones;

• recurrent, in which feedback connections may be present, allowing the formation of

loops.

In feedforward networks the neurons are usually arranged in layers: input and output layers,

which interact with the environment, and one or more layers of hidden neurons, which

do not have contact with the environment. There is a definite order of evaluation of the

neurons. The network receives the input signals, propagates them through all the layers,

and returns signals to the environment through the output neurons. This means that, for the

same input, the network always returns the same output, independent of any previous state,

i.e. the network has no memory.

In recurrent networks there may be separate input and output neurons, or all of them may

be considered input as well as output ones. Differently from their feedforward counter-

parts, recurrent networks have memory, as previous states of the neurons may be used to

update their current state, through feedback connections. They are dynamical systems able

to produce a sequence of different outputs from the same input. The order of neuron eval-

uation may be: synchronous, where the output of all neurons are computed in parallel,

asynchronous, where only part of the neurons are randomly selected for updating, or from

input to output [77].

Artificial neural networks have been successfully applied to a number of problems in a

broad range of different fields [49, 111, 29, 135]. Despite their success, the design of

artificial neural networks is still largely performed through a tedious process of trial-and-
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error definition of thearchitecture(number of neurons and connectivity), combined with a

training process to adjust the weights.

2.2 Training

No matter what architecture is selected to solve a particular problem, the weights must be

determined before the network can be used. Although in some cases the weights can be

calculated analytically (e.g. Hopfield networks [77]), they are usually randomly initialized

with raw values within a specified range, and subsequently adjusted by atraining (a.k.a.

learning) algorithm.

In a large class of problems, a set of input patterns is presented to the network and, for

each pattern, the output of the network is computed and compared to an expected response,

yielding anerror signal. The error signal defines anerror surfaceas a function of the

weights, and can be used to adjust them. This optimization process is carried out iteratively,

aiming at eventually making the network reproduce the desired output patterns within an

acceptable error [77, 78]. There is no unique learning paradigm for artificial neural net-

works. Depending on the application and the architecture of the network, different training

techniques can be used, with their own limitations and advantages [77, 79, 49, 197].

For example, a widely used training procedure for multilayer feedforward networks isback-

propagation. This learning paradigm propagates the error signal associated to the output of

the network, from the output layer to the previous layers. In this process, the weights are

adjusted by a steepest-descent strategy based on local information about the gradient of the

error signal as a function of the weights. By interpreting the weights as components of a

vector, the gradient defines adirectional vectoralong which the weight vector is updated

[181, 77, 139, 79, 160, 16, 197]. Although simple to implement, this learning paradigm

has considerable shortcomings:
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• If the error surface is relatively flat in some regions or directions, a small value for

the gradient will lead to a slow convergence rate [77, 168].

• The error surface associated with the problem is often not convex and, depending on

weight initialization, backpropagation can be trapped in local minima. To reduce this

problem backpropagation can be combined with statistical methods (e.g.simulated

annealing[77]). However, this sort of approach is computationally costly, and the

outcome is still not guaranteed [37].

• The desired output of the network must be known for each input pattern, and the

activation function as well as the output error must be differentiable [77, 168]. In

many problems a target response for each input pattern is not available, but only a

measure of the overall performance of the network after many action steps (e.g. in

reinforcement learning[77, 29]). Sometimes, threshold functions are the best option

to solve a problem, but the requirement of differentiability of the activation function

prevents them from being used.

• The efficiency of the algorithm depends on learning parameters, whose values may

lead to slow convergence or oscillatory behavior [77]. TheDelta-Bar-Delta(DBD)

learning rule [77] and theresilient propagation(RPROP) learning algorithm [157]

attempt to bypass this problem in the course of the training process, by using the sign

of the partial derivative of the error signal with respect to the weights in the previous

and current iterations, to adapt the learning parameters (DBD) and to determine the

sign of the update of the weights (RPROP).Conjugate-gradient[77] is another at-

tempt to address the problem, which uses an intricate combination of the gradient of

the error signal in the previous and current iterations, to define the directional vector

for updating the weights. Conjugate-gradient also performs a search at each itera-

tion, for the optimal value of the learning parameters to minimize the error signal.

Although more efficient, these methods are computationally more expensive than the

standard backpropagation algorithm.
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• Depending on the peculiarities of the error surface, the gradient may simply point

away from the minimum on the error surface, leading the algorithm to move in the

wrong direction [77].

The application of training paradigms based on gradient information to recurrent archi-

tectures is even more difficult, as the recurrent versions are considerably more complex

than the feedforward counterparts [77, 16, 78, 104, 83]. For example, the operation of any

recurrent network can be simulated by a feedforward network for a finite period of time

[119, 160, 29]. This idea is explored in thebackpropagation-through-timealgorithm [160],

which is simply standard backpropagation applied to the substitute feedforward network.

The problem of this approach is that the computation and memory requirements increase

with the size of the training sequences, due to the manifold duplication of units in the

equivalent feedforward network, to simulate the dynamics of the recurrent network [78].

An alternative is provided by thereal-time recurrent learningalgorithm [199]. In this case,

at each evaluation of the recurrent network, an error signal is generated, and used to com-

pute the gradient for continually updating the weights. There is no need for duplication

of units, and training sequences of arbitrary length are allowed. However, for a fully con-

nected network withN neurons, the number of computations for each update of the weights

scales asN4 [78, 1] (to contrast withN2 for standard backpropagation applied to a fully

connected feedforward network withN neurons). Recurrent networks which are expected

to stabilize before their output is read, can be trained byrecurrent backpropagation[138].

The algorithm uses two networks with the same architecture: the original network to be

trained, and another one to compute gradient information to adjust the weights. In this

case, instead of one, two networks have to relax to a stable state at each iteration of the

learning process.

No matter what procedure is used for training, its application still requires the previous

specification of the architecture, often referred to as topology, configuration or structure of

the network. To address this issue, some solutions have been proposed.

8



2.3 Architecture definition

In principle, it is always possible to select an architecture complex enough, and train it

to solve a particular problem. However, this may unnecessarily slow down the training

process and, foremost, a large topology may lead to overfitting of the training set. The

training set is presumably a representative sample of the universe the network is supposed

to face. After training, the network should be able to return reasonable outputs for inputs

which were not included in the training set. This ability is called generalization, and an

overfitted network is unable to do that, as it was adjusted to fine details in the input data,

instead of having learned general features. Also, a smaller network makes more amenable

the analysis of the internal representations encoded in the hidden neurons [168] (nobody

likes ”black boxes”). Moreover, the computation of the output of a large network simulated

via software as well as its hardware implementation are more expensive. Therefore, it is

important to find a solution with a small topology [176].

Some heuristics to estimate the number of hidden neurons (the number of input or output

neurons is constrained by the problem at hand) can help constrain the topology of the

network [165, 82, 19]. These methods are based on the fact that multilayer feedforward

networks with a single hidden layer using a squashing activation function (e.g. a hyperbolic

tangent) are universal approximators, in that any continuous function can be approximated

to any degree of accuracy if a sufficient number of hidden neurons is provided [77, 81,

20, 67, 128, 40]. However, these constraints overestimate the size of the network, and do

not provide a complete description of the architecture, making the arbitrary choice of the

connectivity still necessary. Moreover, they are only applicable to feedforward networks.

To bypass this limitation,destructiveandconstructivemethods have been proposed. De-

structive and constructive algorithms attempt to automatically build artificial neural net-

works by combining training with adaptation of the topology. The idea is to remove or add

features from or to an unsatisfactory architecture according to deterministic rules, and then

retrain it, partially or totally.
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2.3.1 Destructive methods

Destructive algorithms start with a large network, which is expected to be sufficiently rich

to solve the problem, and gradually remove unnecessary elements during or after the train-

ing process [155, 38, 60, 168].

To perform pruning during training, apenalty term(a term proportional to the sum of

the square of the weights, for example) can be added to the error function. When used

with gradient-descent-based learning methods, this tend to reduce the value of the weights

and, as a consequence, unimportant weights are driven to zero, allowing the corresponding

connections to be removed [155, 174, 190, 38]. Eventually, neurons with no output con-

nections as well as neurons with no input connections and constant output can be removed,

by adding their output signals to the bias of other neurons.

The other alternative is to prune the network after a solution to the problem has been found,

by eliminating unimportant connections (eventually neurons as in the previous case), and

then retrain the network. This process is repeated until an architecture sufficiently small is

achieved, or the network fails to converge to a solution. For example, Cun at al. [39] use

the second order partial derivative of the error signal with respect to the weights to estimate

the relative importance of a weight. Those weights whose estimated relative importance

are below a specified threshold are deleted, and the network is retrained. Gileset al. [62]

eliminate the neuron with the smallest input connection weights and retrain the network.

Pelillo and Fanelli [137] remove a neuron from a layer, and readjust the weights to minimize

the effect on the input to the next layer.

Although attractive at first sight, destructive approaches present a series of drawbacks.

Firstly, it is necessary to start with an oversized network, slowing down the training pro-

cess. Secondly, the fact that a weight is small does not necessarily mean that it is not

important, and its elimination may even lead to an untrainable architecture. Thirdly, to

favor solutions with small weights constrains the training process, preventing the search

for solutions with better performance. Fourthly, penalty terms require the specification of

additional parameters, whose values are problem dependent, and which may substantially
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influence the learning process and the quality of the solution.

2.3.2 Constructive methods

Constructive algorithms start with a small network and, during the training process, new

features (neurons or connections) are added to the architecture if the training process stops

converging. It seems that such an approach is more promising than that offered by de-

structive methods. However, constructive procedures face the problem of which features

to include, and how to include them in the topology of the network. To cope with this,

considerable bias is introduced in the architectures.

For example, in the cascade correlation method introduced by Fahlman and Lebieri [46],

a gradient-descent-based algorithm is used to train an initial feedforward network without

hidden neurons. If the learning process stagnates, a hidden neuron is created fully con-

nected to the existent ones, to reduce the residual error, and training is resumed. This

procedure is repeated by adding new hidden neurons if necessary. The advantage of this al-

gorithm is that it uses incremental training, whereby only the connections of the new added

neuron are trained. However, this procedure does not ensure that a small architecture or

even a solution will be found. Moreover, there is the problem of why the training process

stagnates. It may be due to an inappropriate architecture, or because the training process

got trapped in a local minimum due to bad weight initialization. To address this problem

Fahlman and Lebieri use a pool of neurons with different sets of connection weights. Each

neuron in the pool is provisionally incorporated to the network separately. The network is

trained, and the neuron yielding the best network performance is then chosen to be perma-

nently incorporated to the architecture. Obviously, depending on the size of the pool, this

procedure can be computationally very expensive.

Decision trees have also been used to build artificial neural networks [17, 112]. The idea

is to generate a decision tree to classify a particular data set. The tree is then traversed

to produce adisjunctive normal formformula [161] for each class present in the data set.

Afterwards, a network is built with two hidden layers: one with as many neurons as the
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number of distinct literals of the formattribute ¿ valuepresent in the formulae, and a

second with as many neurons as the disjuncts present in the formulas. The number of units

in the input layer is equal to the number ofattributes, and the number of neurons in the

output layer equals the number of classes. Each layer is fully connected to the previous one,

with an adequate set of weights and biases that enable the network to make the classification

correctly. The idea is attractive, since the architecture is automatically built and even values

for the weights and biases are produced (actually the network still has to be trained as its

generalization power with the weights estimated using the decision tree is poor). However,

the method is only applicable to classification problems, and the networks developed may

be unnecessarily big, as the number of hidden neurons grows linearly with the number of

internal nodes of the decision tree, and each layer is fully connected to the previous one.

Despite these limitations, the method can be used to estimate the maximum size of the

network.

The situation is not better for recurrent networks. For example, Fahlman and Lebieri [47]

extended cascade correlation to a limited form of recurrent networks, where only self-loops

are allowed. Gileset al. [61] start training a small fully recurrent architecture. If it is not

satisfactory, a new neuron fully connected to the previous ones is created and the training

process is resumed, not from scratch, but with the adapted weights of the previous step.

Although the authors claim that the procedure reduces the number of training iterations,

this is little more than trial and error.

Another limitation of constructive approaches is that once introduced, a bad structural mod-

ification can not be automatically removed. In principle, it would be possible to keep track

of the sequence of topologies generated, and go back to one of them, should the training

process stagnate. But it would be necessary to know at which point in the sequence of

architectures, a new feature was wrongly introduced, otherwise it would be a shot in the

dark. The situation would be different, if the sequence of architectures could be treated as a

population of topologies, and if their different performances in the task being tackled could

be used to decide which structural modification should be implemented.
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Other constructive algorithms have their applicability limited to binary inputs and binary

neurons only (upstart [55] and tiling [116] algorithms). A general discussion about con-

structive algorithms and their limitations can be found in [178, 113].

2.4 Summary

In addition to the issues regarding the training process itself, the topology of the network

must be defined before any learning procedure can be applied. The alternative provided

by destructive and constructive methods constrain the architectures achieved, either from

the beginning, or through the structural modifications introduced. The alternative of trial-

and-error search blindly generates and tests architectures randomly, and nothing is learned

from their relative performance. A more interesting approach would be to test a population

of randomly generated topologies, and from these experiments to build different networks,

neither randomly nor through the straitjacket of deterministic heuristics, but by taking into

account the relative performance of the networks. If an architecture has a good performance

(not necessarily a solution to the problem being tackled), it must possess some good fea-

tures, and it seems reasonable to create new architectures by combining topologies which

have already proved their worth. Although it is unknown which are the good features to

pick up from the different networks (this might be carried out randomly), there is still a

chance that the outcome has an improved performance. This is exactly the idea of evolu-

tionary computation, to be discussed in the next chapter.
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Chapter 3

Evolutionary computation

3.1 Introduction

Evolutionary computation is another class of global optimization techniques inspired by

biology [14, 88, 13, 36, 50, 11, 9, 8, 53, 179]. Evolutionary algorithms try to mimic the pro-

cess of biological evolution, by applying evolutionary operators ofselection,recombination

andmutation, to individuals in a population of potential solutions to a given problem. These

operators are stochastically applied to favor individuals of better performance in the task at

hand. By repeatedly applying the evolutionary operators to the current population at each

generation, a new population of individuals with better performance is created to search the

space of potential solutions. Ideally, this process eventually converges to a solution to the

problem being tackled.

The evolutionary process is based on thefitnessof the individual, as measured by its per-

formance in the task at hand. The fitness can be measured by a simple objective function

(e.g. the error signal used for training artificial neural networks discussed in Chapter 2), or

can result from a performance evaluation in a complex simulation task.

Initially, a population is randomly created. Selection decides which individuals (parents)

will breed to generateoffspring. The generated offspring are evaluated in the task at hand,
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and then replace the current population or, in some cases, compete with the current pop-

ulation to form the next generation. The basic idea is that the fitness of an individual

represents a local evaluation of the search space. Evolutionary algorithms use the informa-

tion gathered from different points to move the population to a better region of this space,

by favoring the best individuals in the reproduction process.

The method proposed in this work is based on a form of evolutionary computation called

genetic algorithms, which are now introduced.

3.2 Genetic algorithms

Genetic algorithms (GAs) introduced by John Holland [80] is a form of evolutionary com-

putation which strongly stresses recombination as the driving force of evolution [45, 63, 66,

120, 117, 43, 22, 184, 54]. The structure of a typical genetic algorithm can be described as

follows [179]:

0-¿t;
initialize population(s)→ P(t);
evaluate(P(t));
REPEAT until solution is found

{
t+1 → t;
selection(P(t))→ B(t);
breeding(B(t))→ R(t);
mutation(R(t))→ M(t);
evaluate(M(t));
survival(M(t),P(t-1))→ P(t);

}
END REPEAT;

where

s is a random generator seed;
t represents the generation;
P(t) is the population at generationt;
B(t) is the buffer of parents at generationt;
R(t) are the offspring generated by recombining or cloningB(t);
M(t) are the offspring created by mutatingR(t)
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After creating the buffer of parents by a selection procedure, members of the buffer are

randomly selected for breeding. Breeding may be carried out byrecombination, when

genetic material of two individuals is exchanged, or bycloning, when an individual is

simply copied. In the sequence, the generated offspring are mutated and evaluated. Finally,

asurvivalstep may be implemented to replace the current population with the offspring.

3.2.1 Terminology

As GAs are inspired by natural evolution, specialized terms borrowed from biology are

used [120]. In the context of genetic algorithms, individual structures in the population are

calledgenotypes. The smallest units of information in the genotype that can be individually

inherited by the offspring in the evolutionary process are calledgenes. For example, the

genotype may be represented by strings of bits (bitstrings), where ageneis encoded by a

single bit. In the case of parametric optimization using vectors of real-valued parameters

as genotype, each parameter may be considered agene. The different values agenecan

take are calledalleles. Very often the termchromosomeis applied to the individuals of the

population. This may be confusing, as in living organisms, the total genetic content of an

individual is distributed over more than onechromosome. Consequently, in this work the

term genotype is preferred. Moreover, the genetic content of living organisms is referred

to as thegenome(e.g. the humangenome), whereas the specific instance of the genetic

material of an individual (theallelesactually present) is called its genotype. To avoid being

pedantic, in this work, the term genotype is used for both, the general genetic structure of

the individuals of the population and the individual itself, the context will make clear the

distinction.

Before the fitness of an individual can be evaluated, the information encoded in the geno-

type has to be decoded to build a completephenotype. For example, in the case of the

evolution of artificial neural networks, the structure used to encode the elements of the

network (neurons, connections, weights) is the genotype, whereas the network itself is

the phenotype. In other words, the evolutionary process takes place in a genotype space,
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whereas the evaluation process is carried out in a phenotype space. In some representations

to be discussed in Chapter 4, a complex decoding process is necessary to transform the

genotype into the phenotype.

3.2.2 Selection

Selection is the competition among individuals of the population to become parents of the

next generation. Selection procedures are designed to favor those individuals with better

performance. Most selection schemes use an intermediate buffer (mating pool), whereby

fitter individuals have higher probability of being copied to this buffer. Subsequently, pairs

of individuals are selected at random from this buffer for recombination or cloning [22,

120].

A good selection method should exert sufficient selective pressure to boost evolution [64].

This is more noticeable later in the search, when the fitness variance in the population is

small and low selective pressure may lead tostagnationin the evolutionary process. On

the other hand, it should not favor highly fit individuals excessively, since early in the

search the fitness variance is high, and a group of super individuals may quickly mate

and multiply, preventing an adequate exploration of the search space (a problem known as

premature convergence). A variety of different selection procedures have been used by the

evolutionary computation community [120, 11, 63, 117].

For example, a straightforward form of selection isfitness proportionate. In this selection

procedure, individuals are selected with a probability proportional to their fitness divided

by the average fitness of the population. This is the method originally used by John Holland

[80]. It is easy to implement, but it does not address the aforementioned issues of stagnation

and premature convergence.

An alternative method isrank selection, whereby individuals are ranked according to their

fitness, and the probability of selection is taken proportionally to the rank rather than to the

raw fitness. The method avoids the premature convergence and the stagnation problems.
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However, it requires sorting of the entire population at each generation.

To avoid this drawback,tournament selectioncan be used. This method can be imple-

mented by taking a small random sample (the size of the sample is thetournament size) of

individuals of the population. The fittest individual in the sample is selected and inserted in

the buffer of parents, and the sample is returned to the population. The process is repeated

until the mating pool is full (the mating pool and the population are of the same size). This

selection procedure was adopted in all experiments carried out in this work.

3.2.3 Recombination makes genetic algorithms work

Recombination is the distinguishing feature of genetic algorithms. It is the mechanism

by which genetic material of different individuals is combined to create offspring. The

theoretical foundation of GAs is based on the assumption that highly fit individuals can be

built by assembling good small blocks of alleles (building blocks[80, 63]). The objective

of recombination is to allow the exchange of genetic material between parents, in order

to exchange building blocks, create new ones, and possibly not destroy good ones in the

process. Recombination is usually carried out by acrossoveroperator. For example, in

fixed length linear representations,one-pointcrossover can be carried out by selecting two

parents, choosing a common crossover point in both parents, and swapping the right ends

of both genotypes. With a variable length linear genotype, one-point crossover can be

implemented by randomly selecting two crossover points, one in each parent, and swapping

the left ends of both parents.

In the canonical form introduced by John Holland [80], GAs use bitstrings as representa-

tion. In this case, building blocks are interpreted as patterns of bit values in a specified

position in the bitstring (the same bit pattern in a different position has a different mean-

ing) which contribute to a higher fitness of the individual. The pattern can be formed by

a small group of adjacent bits, or by a big group of bits separated by many bit positions.

To describe bit patterns, it is useful to use a template made up of ones, zeros and asterisks,

called aschema. For example, in the bitstringS= 1010100110, the bit pattern formed by
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the 1st, 5th, 7th and 9th bits can be represented by the templateA = 1***1*0*1*, where the

asterisks indicate that the value of the bits in those positions do not matter. The distance

between the two fixed bits in the schema which are farthest apart is thedefining lengthof

the building block, and the number of bits in the schema is theorderof the building block.

In this case, schemaA represents a 4th order building block of length 8.

Any bitstring that fits a schema in its fixed positions is an instance of the schema (e.g.

1101100010 and 1000110111 fit schemaA). As a consequence, a population of bitstrings

may contain different instances of the same schema, and the average fitness of the individ-

uals in the population which fit a particular schema, may be used to estimate its fitness. On

the other hand, a bitstring is an instance of several different schemas (orschemata). For

example, the bitstringS is an instance of schemas ***01**110, 1***1**110, 1******11*,

and many others. Consequently, when a population of bitstrings is evaluated, the fitness

of a much larger number of building blocks is actually estimated. This property of GAs is

calledimplicit parallelism.

Intuitively, the bigger is the building block and the higher is its order, the more difficult it

is to keep its integrity when bits are exchanged between parents to generate the offspring.

This suggests that the number of short, low-order building blocks with above average fitness

should increase in subsequent generations (this intuitive idea is formalized in theschema

theorem[80]). This is also valid for other non-binary alphabets. However, its extension

to representations other than linear is still a subject for research [117, 142]. In spite of

this, it gives support to the idea that genetic algorithms search for ever better individuals

by sampling and combining highly fit, short, low-order building blocks to form larger ones

in the course of evolution. This is thebuilding block hypothesis[64]. Although it is only a

hypothesis, accumulated experimental evidence indicates that it is true, and it emphasizes

the idea that good evolutionary operators which work on meaningful short building blocks,

are critical for the performance of GAs [117].

For example, as long as the representation uses small building blocks, the genetic algorithm

will be able to exploit this information by recombining them without disruption. On the
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other hand, if good building blocks have their information widely spread over the genotype,

they are likely to be disrupted by recombination. Other difficulties may also arise when

trying to blindly encode the potential solutions to a problem in a representation. In the

ideal case, recombination takes the ”best” part of one parent and combines it with the

”best” part of the other parent, creating a new individual that would be superior to its

parents. But there is no way to be sure about that. If the effect of one gene depends on

the value of other genes, there may be severe disruptive effects when these are far apart

within the genotype. This is called theepistasisproblem. One may try to put these genes

close to each other in the genotype to reduce the problem. But to do so, one must know

their effect beforehand, which is seldom the case. Another problem occurs if a building

block A has a higher fitness than a building blockB, but B contains a low-order building

block C with higher fitness than any low-order one inA. In this case, althoughA is better

thanB, the search will be misled by an increase in the number of the low-order building

block C in the population. This problem is calleddeception[64]. In general, any situation

where the simple manipulation of low-order building blocks may mislead the search away

from the optimum solution may be calleddeceptive[45]. These issues again highlight the

importance of a good representation to solve a particular problem.

One-point crossover is often used in theoretical analysis, but it has the disadvantage that

given two individuals, some combinations of their buildings blocks can not be achieved

in the offspring. A more flexible option istwo-pointcrossover, whereby the linear geno-

type is considered to be circular, and two segments, one in each parent, are selected and

swapped. An extreme case isuniformcrossover [182], whereby the value of each gene in

the offspring is randomly selected from each parent. Uniform crossover is more flexible, in

that any combination of genes can be achieved. On the other hand, it is the most disruptive

to the building blocks. Several other forms of crossover have been investigated involving

linear and non-linear representations (see [117, 27] for an extensive discussion of the sub-

ject). However, their advantages and disadvantages depend on the representation and the

application. The subject is further discussed in Chapter 4, in the scope of the evolution of

artificial neural networks.

20



The number of offspring created by crossover is calculated proportionally to the size of

the population, as a function of acrossover probability. The remaining offspring to build

an entire new population are created by randomly cloning individuals of the mating pool

produced by selection.

3.2.4 Mutation

In genetic algorithms mutation is a secondary operator, used to introduce lost or new genetic

material, and to keep genetic diversity in the population [12]. Mutation implements a

random change in the value of one or more genes. For example, in a bitstring mutation can

be implemented by flipping a bit. For real-valued representations, Gaussian noise may be

added to the encoded parameters. Although not biologically inspired, mutation can also

be implemented by crossover with a randomly created individual (other forms of mutation

in connection with the evolution of artificial neural networks are discussed in Chapter 4).

Mutation is applied to the offspring created by recombination and, similarly to crossover,

the number of mutation operations is determined by amutation probability.

3.2.5 Survival policy

Some implementations of genetic algorithms introduce a policy for replacing the current

population. Usually, the population size is constant and a new population is created at each

generation to replace the current one. When the current population is simply replaced by

the offspring (even if some of the offspring are simply copies of the parents), the approach

is calledgenerational. On the other hand, if only part of the population is replaced by the

offspring at each generation, the approach is calledsteady-state[120, 164]. In the latter

case, usually a small number of offspring is created at each generation to replace the worst

individuals in the population, or a competition for survival may be implemented between

the offspring and the current population [59, 28, 30, 122, 185].
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Steady-state approaches may present higher convergence rates, but the additional selective

pressure introduced may result in a rapid loss of genetic diversity in the population, lead-

ing the evolutionary process to get trapped at local optima [120, 164]. With generational

approaches this risk is reduced, but it may happen that good individuals of the current

population are replaced, and simply lost forever. Sometimes, this issue is addressed by

implementing anelitist strategy, whereby the best individual of the current population is

always copied to the next generation.

Which of these approaches is the best for a given problem is an open question, as the overall

efficiency of a genetic algorithm is the result of the combined effect of all its mechanisms,

and their application [120, 164]. In all experiments carried out in this work, a generational

approach has been used, whereby a new population, formed by applying mutation to the

individuals generated by crossover and cloning, replaces the entire current population.

3.2.6 Performance evaluation

A necessary instrument for any evolutionary algorithm to work, is a measure of the relative

performance of the individuals of the population in the task at hand, in the form of a fitness

function. In the case of artificial neural networks, the standard mean square error of the

difference between the target output and the output produced by the network is commonly

used to evaluate the fitness of the individual. Other alternatives include: a number of

successful steps in a control task [193, 124], the output error of the network after training

for a specified number of iterations by a learning procedure at each generation [90, 201],

the number of relaxation cycles until a recurrent network reaches a stable state [28], etc.

In addition, similarly to the destructive methods discussed in Section 2.3.1, penalty terms

for the complexity of the network can also be included in the fitness function to favor more

parsimonious architectures [202, 41, 30, 7, 28, 166].
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3.3 Genetic programming

Any introduction to genetic algorithms would be incomplete without mentioninggenetic

programming(GP). Genetic programming [95, 18, 4] is a special form of genetic algorithm,

originally developed to evolve computer programs, which uses structures calledparse trees

as representation. The nodes of the parse tree are the genes, which may be of two types:

functionsor terminals. Functions are theinternal nodes of the parse tree which receive

input from other nodes. Terminals are the external nodes (leaves), and may be variables or

numerical constants representing input. The parse tree is evaluated by assigning values to

the terminals and evaluating the nodes of the parse tree in a bottom-up sequence until an

output is returned by the root node.

These structures are evolved by a specialized crossover operator, which randomly selects

two nodes, one in each parent, and swaps the subtrees which have the selected nodes as

roots.

Genetic programming is able to handle variable size structures, although in practical ap-

plications, the size of the parse tree is usually bounded to avoid excessive growth [99, 5].

The application of genetic programming to the evolution of artificial neural networks is

discussed in Section 4.5.

3.4 Summary

In this chapter, general features of genetic algorithms have been presented. There are sev-

eral variations on the basic evolutionary operators that can be explored [11, 63, 120, 117].

Nonetheless, the conclusion can be drawn that, as long as a measure of the relative per-

formance of the individuals is provided to guide the optimization process, no constraints

are imposed either on the individuals of the population or on the problems that can be

addressed. This flexibility makes genetic algorithms attractive for the design of artificial

neural networks. However, as recombination is the fundamental feature of GAs, the issue
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of how to encode the network in order to allow crossover to preserve and create new good

building blocks still remains. It is true that bitstrings are the canonical representation for

GAs. However, many different representations have been used in different applications,

with encoding mechanisms and operators more natural to the problem being addressed. To

discuss this subject in the case of the evolution of artificial neural networks, a literature

review is presented in the next chapter.
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Chapter 4

Integrating neural networks and genetic

algorithms

4.1 Introduction

Genetic algorithms have been used in combination with artificial neural networks in many

different ways [191, 187, 98, 52, 200, 143]: for finding new learning rules [24, 32, 154,

153, 126], for optimizing an initial set of weights to be used by a training procedure [23,

133, 91], for evolving the activation function [129], for creating a suitable training data

set [173], for pruning the network [73, 196], and for optimizing parameters of learning

procedures [23, 156]. Although interesting, these applications do not address the problem

of designing a complete network, since they still depend on other methods to build the

architecture as well as to adjust the weights.

Genetic algorithms can also be used to optimize either the weights or the architecture ex-

clusively or, more ambitiously, GAs can evolve the architecture and the weights simulta-

neously, without resorting to a separate learning procedure. Although the subject of the

present work is the latter combination of GAs and ANNs, critical issues involving a good

representation for evolving the architecture and the weights concurrently also arise when
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evolving them separately. Therefore, a literature review on these three combinations of ge-

netic algorithms and artificial neural networks is presented in the next sections. From this

literature review, a few lessons are drawn about which conditions the evolutionary operators

and the mechanisms for encoding ANNs should meet.

4.2 Genetic algorithms for training

Genetic algorithms have been used for training artificial neural networks by replacing con-

ventional learning algorithms such as backpropagation. As the architecture is fixed, no

architecture information has to be included in the genotype; only the weights of the neural

network have to be properly encoded (biases can also be represented as weights by includ-

ing an extra unit of constant output, and connecting it to all neurons of the network). The

fitness of the individuals is obtained by assigning the weights to the given architecture, and

assessing the performance of the resulting network in the task at hand.

Bitstrings are the canonical representation for genetic algorithms. Bitstrings are sometimes

preferred because they are believed to maximize the implicit parallelism of GAs (see Sec-

tion 3.2.3), allowing more building blocks to be simultaneously evaluated [65]. Binary

representations also allow standard crossover and mutation operators to be applied, with-

out the need for the design of tailored genetic operators. A straightforward procedure to

encode the connection weights is to assign a specified number of bits to each weight, and

to place them in a vector, in a predefined order. The connection weights of a neuron are

usually placed next to each other in the genotype, so that they constitute functional units to

be evolved by the genetic algorithm [86, 195, 171, 196, 87, 198, 101, 31].

However, there has been considerable debate concerning the appropriateness of using bi-

nary encoding in optimization tasks where the search space of the genotype is quite differ-

ent from that of the phenotype [10, 51, 65, 136]. In the case of encoding the weights of

artificial neural networks, this encoding scheme presents several drawbacks:
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• A binary substring that represents a weight is highly epistatic (see Section 3.2.3).

This makes it difficult to gather useful information about the fitness of groups of

bits in a substring, or across the border of weight descriptions, as the fitness of the

group of bits is strongly dependent on the values of the other bits in the substring.

This undermines the fitness evaluation of small low-order building blocks and may

mislead the search by the genetic algorithm. This is an extreme example, where

a group of genes is so inextricably interconnected, that they should be treated as a

single unit, instead of individually [44].

• Crossover and mutation can introduce big jumps in the search by changing a single

bit in the value of the weights (Gray coding can reduce this problem, but does not

eliminate it). This reduces the fitness correlation between parents and offspring,

making the search harder.

• If few bits are used to encode the weights, the genetic algorithm may be prevented

from finding a solution, as some combinations of real values may be impossible (or

difficult) to achieve with sufficient precision [65].

• For large networks, the exponential increase in the size of the search space, may

render the task intractable, as genetic algorithms are inefficient for manipulating bit-

strings with thousands of bits [117]. Successful experiments to train artificial neural

networks with long bitstrings (14,036 bits) have been reported by Korning [93], but

it is difficult to assess these results without knowing the complexity of the search

space (actually a comparison with backpropagation performed by Korning suggests

that the task investigated was not really difficult). As a consequence, it is arguable

that binary coding does not scale up well with the size of the network [41, 195, 196],

and that the approach is impractical, but for small network configurations.

An alternative is to use real-valued weights. In this case, each weight is a gene, and

crossover takes place only between weights and not within the weights. This eliminates

disruptive effects caused by crossover at the binary level. It also reduces the opportu-

nity for deception, as fewer low-order building blocks are available for manipulation [65].
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Additionally, alternative forms of recombination can be used (e.g. linear combination of

weights between parents), and no conversion of the binary code to floating point numbers

is required for each fitness evaluation. On the other hand, by reducing the dimensionality

of the problem, the implicit parallelism provided by the binary representation is reduced,

i.e. less information is being obtained to guide the search by the genetic algorithm at each

generation. Moreover, if standard crossover is used, those weights present in the population

can be recombined, but new values are not created, i.e. the search space is reduced (de-

pending on the problem, this can be an advantage or disadvantage). Although the situation

is not clear-cut, the accumulated experimental evidence suggests that this form of encoding

is more effective than bitstrings [121, 193, 192, 159, 186, 84, 115, 91, 172, 25].

Genetic algorithms have also been used in combination with constructive algorithms to

build the network [144, 145, 134, 2]. In this form, GAs are used for training the architec-

tures created by each structural modification introduced, replacing conventional learning

methods, and removing the limitations inherent in them (see Section 2.2). However, this

procedure still presents the limitations introduced by constructive methods discussed in

Section 2.3.2. Moreover, the repeated training by genetic algorithms after each structural

modification introduced by constructive methods is computationally very expensive.

Lesson 1Real-valued weights should be preferred.

4.3 Genetic algorithms for building the architecture

Before any training process can be carried out, the topology of the network must be defined.

The definition of the architecture is of paramount importance, as it has great influence on

the network performance, as well as on the effectiveness and efficiency of the learning

process. As discussed in Sections 2.3.1 and 2.3.2, the alternative provided by destructive

and constructive techniques is not satisfactory.
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The design of the network architecture can be interpreted as a search in the architecture

space, where each point represents a different topology. Searching this space is a very

difficult task. Even with a bounded number of neurons, and a constrained connectivity

(e.g. feedforward), the search space is huge. Moreover, other characteristics of the search

space make things even more difficult. For example, on the one hand, networks with similar

structures may have quite different performances, on the other hand, networks with quite

different topologies may show similar learning and generalization abilities. Moreover, the

performance evaluation is indirect and noisy, since it depends on the training method and

on the initial conditions (weight initialization) [118, 200].

The ability of genetic algorithms to search large and complex spaces has been demon-

strated in a wide range of tasks. As consequence, they seem to be natural candidates to

artificial neural networks design methods. When using genetic algorithms for optimizing

the architecture, the connection weights are obtained by training. At each generation the

genotype is decoded into the corresponding architecture, weights are randomly assigned to

the connections, and the resulting network is trained by a conventional learning algorithm.

The efficiency of the process of building the architectures using GAs is strongly dependent

on how the features of the network are encoded in the genotype. In principle, a bitstring

representation would be enough for any application. However, it is not necessarily the best

approach to evolve the architecture of artificial neural networks. Consequently, a decision

has to be made regarding how the information about the architecture should be encoded in

the genotype.

According to the degree of network specification, encoding schemes can be broadly classi-

fied asdirectandindirect. In directrepresentations (a.k.a.strongor low-levelspecification)

every component of the network (neurons, layers, connections) corresponds to a specific

element in the genotype [158, 118, 108] (the contrary is not necessarily true, as there may

be unused parts or redundancies in the genotype). They are very powerful since, within

predefined limits, in principle all architectures can be achieved.Indirect representations

(a.k.a. weakor high-levelspecification) encode general features of the architecture, like
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number of layers, number of neurons per layer and connectivity pattern (e.g. full connec-

tivity between adjacent layers). Fine details of the architectures are predefined or have

some degree of regularity.

In general, the encoding scheme should have enough expressive power to capture the po-

tentially interesting architectures, while excluding flawed or meaningless ones [108]. Un-

fortunately, both features are usually mutually incompatible or impossible to achieve. On

the one hand, to constrain the search, previous knowledge about the potential architectures

is required. On the other hand, by excessively constraining the search, interesting solutions

may be missed. However, in terms of the evolutionary process, some desirable features of

the representation and evolutionary operators can be outlined [15]:

closure - A representation is said to beclosed, if a genotype always decodes into a valid

phenotype according to the specified constraints (e.g. feedforward connectivity).

This property can be built into the genotype, or introduced in the genotype/phenotype

decoding procedure, by excluding or repairing unacceptable traits from the pheno-

type (e.g. loops in a feedforward architecture). The evolutionary operators designed

to operate on the representation should also possess the attribute ofclosure, by only

yielding valid offspring.

completeness - A representation should be able to generate all possible solutions to the

problem at hand within specified structural constraints (maximum number of neurons

and connectivity pattern).

scalability - In general,scalability expresses the ability of tackling ever bigger or more

difficult problems. For example,scalabilitycan be measured by the increase in the

size of the representation byn units (genes), when the phenotype (architecture) is

increased by one element (a neuron or a connection). Consequently, the greater the

value ofn, the less scalable would be the representation, as the search for larger net-

works would be more difficult, due to the increase in the size of the search space.

However, it is complicated to compare the scalability of different encoding mecha-

nisms this way. A representation may show a smaller value ofn than another, due
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to constraints imposed on the achievable architectures. By reducing the search space

this way, the number of achievable solutions may decrease, and the difficulty of the

search may actually increase instead of decrease. Moreover, more compact repre-

sentations may require computationally costly decoding procedures to transform the

genotype into the phenotype. Therefore, it seems more reasonable to compare the

scalability of different encoding schemes, by the difficulty to find a solution, as mea-

sured in terms of the increase in processing time, number of fitness evaluations, or

any other suitable parameter to measure computational cost.

There has been a lot of research involving genetic algorithms to evolve the architecture of

artificial neural networks. Some representative methods are discussed next.

4.3.1 Linear representations

Linear representations are an example of direct encoding scheme, whereby the elements of

the network are organized in a vector. The vector is structured, with the neurons functioning

as building blocks, and the crossover operator is designed to respect this organization.

A standard example of this approach is provided by linearizing aconnectivity matrix. The

connections of a network withN neurons are represented as aN ×N connectivity matrix,

where the entries in each row and column represent theincomingandoutgoingconnections

of each neuron, respectively. Each entry in the matrix may be 0 or 1, indicating absence or

presence of connections, respectively. The matrix is linearized by concatenating the rows

(it can be done by column as well [48]), yielding a vector. For feedforward networks only

half of the matrix is necessary, whereas for recurrent networks the entire matrix has to be

used. The linearization procedure for a feedforward network is illustrated in Figure 4.1.

Miller et al. [118] explored this procedure by interpreting each row (which represents

a neuron with its incoming connections) as a functional building block, and performing

crossover by exchanging the same row between parents. This prevents the creation of

flawed individuals (e.g, with no connections from the input layer), as long as they are
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not present in the initial population. However, this considerably limits the connectivity

patterns achievable, since only connections already present in the initial population can be

used, i.e. new building blocks are not created (this could be partially solved by mutating

individual entries of the matrix). An alternative proposed by Stepniewski and Keane [180]

performs one point crossover in the bitstring resulting from the linearized matrix, allowing

the creation of new connections not present in the initial population. It should be noted that

the matrix linearization only makes sense if the crossover operator takes advantage of this.

With the operator used by Milleret al. it is a waste of time to linearize the connectivity

matrix, as the operation may be carried out on the matrix directly.

Figure 4.1: (a) Network. (b) Corresponding connectivity matrix. (c) Vector obtained by con-

catenating the rows of the matrix (only entries below the diagonal are relevant for a feedforward

connectivity).
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The advantages of the linearized connectivity matrix method lie in its simplicity of imple-

mentation, and the fact that in principle any architecture can be achieved within predefined

limits. On the other hand, for large networks, the size of the connectivity matrix can in-

crease excessively, making the search difficult for genetic algorithms. This is aggravated

by the fact that non-existent elements of the network (e.g. a row of zeros) are still encoded

in the genotype, wasting memory and computational power.

This form of representation allows a restricted form of encoding artificial neural networks

of different sizes in a fixed size genotype, since sometimes elements can be eliminated

from the phenotype without affecting its functionality. For example, neurons which do not

send signals to other neurons (indicated by no outgoing connections) can be eliminated

from the phenotype. Similarly, in feedforward architectures, neurons which do not have

incoming connections can also be deleted, as their output is constant, and their effect can

be compensated by changing the biases of other neurons. Non-existent connections are not

expressed in the phenotype either. However, this pruning procedure is only carried out in

the phenotype, the genotype is kept unaltered. Ideally the elimination of network elements

should be carried out in the genotype itself, by the genetic operators directly, improving

the search by avoiding the accumulation of parts of the genotype which do not contribute

to the fitness of the individual.

For example, Saseet al. [166] partially address this issue by adopting a bitstring with

a hierarchical structure divided into two parts. The first part is a substring indicating the

presence or absence ofN neurons in the network by the bit values 1 and 0, respectively. The

second part is a substring resulting from the linearization of the connectivity matrix of the

network. If a neuron is not present in the network (the corresponding bit is zero in the first

part of the genotype), its connections encoded in the second part of the genotype are simply

ignored when the individual is evaluated. The authors perform one-point crossover sepa-

rately in both segments of the genotype. The representation allows the explicit elimination

of neurons, but their connections are still kept in the genotype even if they do not contribute

to the fitness of the individual. Moreover, a neuron can be completely disconnected and still

be encoded in the first part of the genotype.
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Another approach proposed by Schiffmann and Werner [169, 170] addresses the issue of

deleting elements of the network in the genotype by using a variable size representation.

The genotype is an ordered list of units, where each unit represents a neuron with its incom-

ing connections. Each connection is represented by an index indicating the position of the

connected neuron in the network. The number of units in the genotype is variable, so that

networks with arbitrary size can be encoded. Although the length of the individuals may

be different, crossover is performed by selecting a common crossover point (the crossover

point is selected within the shorter parent), and swapping the right ends of both parents.

This crossover operator guarantees that the offspring are not larger than the biggest of the

parents and, consequently, constrains the maximum size of the networks attainable, to the

size of the biggest individual in the initial population. Only those elements actually active

in the network are really encoded, non-existent connections are not encoded in the geno-

type, and isolated neurons are deleted from the offspring. However, similarly to the method

proposed by Milleret al. [118], only connections already present in the initial population

are explored. Moreover, the elimination of isolated units in the offspring may lead to more

deletions of neurons in the next generation. For example, incoming connections of a neuron

transferred from one parent to the offspring, may require a non-existent neuron, which is

not present in the offspring because it has been deleted from the other parent in a previous

generation. This means that further elimination of connections and possibly neurons may

be required. In other words, closure is not a characteristic of this method (it is not clear

how the authors deal with this problem).

Lesson 2Structured linear representations treat neurons as building blocks,

and can represent networks of varying sizes. However, it is necessary to

design a representation which allows the complete elimination of network

elements by the genetic operators directly.
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4.3.2 Blueprint representations

Blueprint representations are an example of an indirect encoding scheme. The networks

are divided intoblocks. Each block represents a group of neurons, which can be as large

as a layer or a group of layers. The genotype is a list of blocks (clusters) separated by

markers, where each block includes the number of layers as well as the number of neurons

per layer in the cluster, and one or moreprojection fieldsto specify connections from the

block to other clusters (see Figure 4.2). Crossover may be performed at bit level, with each

block represented by a bitstring [75, 76, 74, 158], or may be carried out between blocks

only [109, 108].

Blueprint representations are based on a modularity interpretation of the network, as ex-

pressed by the clusters (although a cluster may in principle represent a single neuron). If

all blocks were reduced to single neurons and projection fields were included for each of

their connections, the result would be a direct encoding scheme. The idea behind blueprint

representations is to assume that the network can be divided into groups of neurons which

share the same connectivity pattern. As a consequence, instead of requiring the encoding of

individual connections, only connectivity between groups have to be specified. However,

this requires some features to be predefined. For example, it may be assumed that layers

within a block are fully connected, and that only neurons in the highest layer of a block

make connection to other blocks. In addition, layers within a block are of the same size.

Blueprints are very flexible encoding schemes, as the number and size of the blocks are

variable, allowing networks of arbitrary complexity to be encoded. Besides, depending

on the number of clusters and the number of projection fields, the representation can be

fairly compact, although this is obtained at the expense of assuming some regularity in the

network. When the blocks consist of more than one layer, the projection fields specify the

areas in the target blocks as a rectangle, defined by the number of layers in the area and

the number of neurons per layer, and even the position of the rectangle in the target block

is specified by an offset parameter [158]. This is a first step in the direction of interpreting

neural networks as two-dimensional structures, an idea fully explored in this thesis.
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Figure 4.2: (a) Example of blueprint representation (adapted from [74, 158]). (b) Example of

block with projections areas to blocks 2 and 3. (c) Connections projected from block 1 onto blocks

2 and 3. All neurons in the last layer of (black squares) block 1 are connected to all neurons in the

projected areas (black squares) in blocks 2 and 3.
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4.3.3 Methods based on two-dimensional representations

In this work, the term two-dimensional representation applies to those encoding mecha-

nisms which either encode spatially meaningful parameters, or use evolutionary operators

which handle artificial neural networks as two-dimensional structures.

In the first case, parameters for growing a network as a physical entity are encoded in a

linear genotype. To a certain extent these methods are similar to grammar-models (see

Section 4.3.4), in that, at each generation, the network is constructed from a small embryo.

However, in contrast to grammar-models, they are based on the process of spatial growth

of axonsandbranchesin biological neurons.

An example of this approach is provided by Nolfi and Parisi [131, 132, 130], who inves-

tigated a growing method with development in time. The genotype consists of a list of

blocks, where each block contains the instructions to develop one neuron, namely: anex-

pression gene, the spatial coordinates of the neuron on atwo-dimensional nervous system,

a branching angle, asegment lengthand a connection weight (all connections of a neuron

have the same weight). The expression gene is a temporal mechanism for controlling the

growth of the neuron’s axon and branches. The individual is assigned a number of epochs

to live, and the expression gene indicates when during its life time, a particular neuron will

be activated by the growth of its axon and branches. Using the angle and segment informa-

tion, a neuron grows segments (axons) on the nervous system (a two-dimensional lattice),

and a connection between two neurons is defined when the axon of a neuron reaches the

neighborhood of another. Neurons may have different expression genes and, consequently,

may be active or not, at different stages of the individual’s life time. The idea is that an

individual is not fully developed at birth, i.e. the genotype does not determine a complete

individual instantly, the complete phenotype is created through a developmental process.

During its life time, the individual is evaluated at different stages of development, and this

information is used to compute the fitness of the genotype. Methods which separate evolu-

tion of the architecture from the optimization of the connection weights also represent an

ontogenetic adaptation of the individual (the weights in this case). The difference is that a
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growing method develops the whole individual. It is an interesting idea, although fitness

measured by repeated evaluations in the course of a developmental process is computation-

ally expensive. Fujita [58] applied a similar model to fully develop the architecture before

the evaluation process takes place.

In the second case, the encoding schemes use a genotype with structure similar to the

phenotype (network), they not only interpret artificial neural networks as two-dimensional

structures, but also implement a crossover operator to exploit this fact. For example, Arena

et al. [7] proposed a binary matrix representation to encode the hidden layers and neurons

of artificial neural networks. Given a maximum numberM of hidden layers and a maxi-

mum numberN of hidden neurons per layer, aM×N binary matrix is constructed where

the rows are the hidden layers of the network, and each entry in a row represents an active

(1) or inactive (0) neuron. The matrices are randomly initialized with a number of active

neurons distributed over the layers (see Figures 4.3a and b). Connectivity is predefined

(e.g. full connectivity between adjacent layers). Crossover is performed by selecting a

common rectangular window in both parent matrices and swapping them (see Figures 4.3c,

d, e and f). Obviously, this kind of operation could also be carried out in a linear genotype,

by linearizing the matrix by rows. Segments of equal length could be taken from each layer

in one individual and swapped with corresponding segments in another individual, but it

would be difficult to justify the procedure. The operation only makes sense if the network

is visualized two-dimensionally.

Sato and Ochiai [167] proposed a two-dimensional crossover operator based on the inter-

pretation of the network as an oriented graph. All individuals in the population have the

same graph structure of layers and neurons per layer. Each neuron contains all information

about the connections and weights necessary to compute its output. Crossover is performed

by selecting a common random neuron in both parents, and swapping the subgraphs repre-

sented by all neurons which are directly or indirectly connected to the selected neuron. That

is to say, the authors treat the subgraphs as building blocks. However, the crossover opera-

tor proposed by Sato and Ochiai is severely limited by the fact that its does not create new

substructures, only those already present in the population are manipulated. The authors
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Figure 4.3: (a) Network. (b) Corresponding matrix representation of the neurons in the hidden

layers (adapted from [7]). Note that only the number of hidden neurons represented in each row

matters, not their distribution in the row. (c) Selected window in the first parent. (d) Selected

window in the second parent. (e) and (f) Offspring obtained by swapping the selected windows.
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suggest the use of large populations to compensate for this limitation, but this introduces

obvious computational costs.

The methods proposed by Arena et al. [7] and by Sato and Ochiai [167] constrain the search

to those substructures already present in the population. It may be impossible to achieve

a connectivity pattern necessary to solve a particular problem, by exclusively exchanging

substructures present in the population. By merging existing substructures to produce new

ones, arbitrary connectivity can be achieved, increasing the expressive power of the repre-

sentation. It may also happen that a good neuron has been evolved, but it is simply in the

wrong place. It is possible to wait for the evolutionary process to build the same neuron

in the proper place, by using standard evolutionary operators such as one-point crossover.

However, it would be more efficient to design a crossover operator which includes the

possibility of moving neurons around in the genotype.

For example, a more flexible crossover operator than that proposed by Arenaet al. [7]

might be implemented by exchanging windows of equal size, but selected randomly in both

parents. This would lead to neurons from different positions to be exchanged. One might

also investigate the possibility of randomly merging the two windows into one, to create an

offspring. An even better approach might be obtained by replacing the binary matrix with

another one, where each entry would still represent an inactive neuron or an active neuron.

But the active neurons in this case would be encoded as lists of incoming connections

from other neurons. This would allow the crossover operator based on a common window

to evolve the network connectivity. Crossover based on random windows could also be

applied, but mechanisms for redefining connections would be required, to avoid violating

connectivity constraints (e.g. creation of loops in feedforward topologies). These ideas of

merging two-dimensional structures and redefining connections are fully explored by the

author in this thesis.

Similarly, the selected subgraphs in the crossover operator proposed by Sato and Ochiai

could also be randomly merged into a single one, which would replace one of the selected

subgraphs in the offspring (a copy of one of the parents). Once more, this alternative
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suggests merging of two-dimensional structures as an idea to be further explored in this

work.

The method introduced by Nolfi and Parisi can, in principle, generate arbitrary connectivity,

but the effect of the parameters encoded in the genotype is hard to predict, due to the

developmental process needed to generate the network (a feature also common to grammar-

methods, to be discussed in the next section).

Lesson 3Crossover operators can be defined to operate with two-dimensional

structures, but they should be able to create new substructures by merging

existing ones.

4.3.4 Grammar-based methods

Grammar-based methods are indirect representations based on the idea of building com-

plex structures by repeatedly applying instructions to rewrite elements of a simple initial

structure. A common form of this technique is provided byL-systems, originally intro-

duced by Lindenmayer as a mechanism to describe the development of plants [102, 147].

L-systems start with an initial character (axiom) and, recursively and in parallel (simul-

taneously), apply instructions (production rules) for rewriting characters, for a specified

number of cycles. A simple example can be used to illustrate the idea.

Suppose that there are two charactersa andb, and that there are two production rules:

a → ab
Meaning that the charactera is to be replaced with stringab.

b → a
Meaning that the characterb is to be replaced with charactera.

The component of the rule to the left of the arrow is calledpredecessor, and the component

to the right of the arrow is calledsuccessor.
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In the hypothesis that the axiom is the charactera, the following sequence of strings would

be produced after three rewriting cycles:

a
ab
aba
abaab

These production rules constitute acontext-freegrammar, as their application is indepen-

dent of the characters before and after thepredecessor. A more sophisticated approach

takes into account the interaction between neighboring characters in the string by using

context-sensitiverules.

For example, suppose that there are three charactersa, b andc, and that there are three

production rules:

a → ab
The charactera is to be replaced with stringab.

ab < b → ca
The characterb is to be replaced with the stringca, only if it is preceded by the
stringab. The stringab is theleft context.

b < c > a → aab
The characterc is to be replaced with the stringaab, only if it is preceded byb
and followed by aa. In this case, aleft and aright contextare present,
represented by the charactersb anda, respectively.

In this case, the following sequence of strings is obtained after the application of four

rewriting cycles to the axioma:

a
ab
abb
abbca
abbcaaabab

These ideas have been applied to the evolution of artificial neural networks [89, 90, 26,

201], by using genetic algorithms to evolve production rules, and using characters with
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appropriate semantics to allow the interpretation of the generated string as an artificial

neural network. By encoding the rules in the genotype, the search is carried out in the space

of transformation rules, instead of in the space of networks. This is biologically appealing,

as the development from genotype to phenotype controlled by the transformation rules may

vaguely resemble the development of the embryo controlled by the DNA in nature. It is

argued that grammar-based methods show better scalability than direct encoding methods,

and also that they contribute for the formation of regular patterns of connectivity [89, 90,

201]. To illustrate these and other issues, it is worth discussing a specific example, the

method proposed by Kitano [89, 90].

Kitano used a context free grammar to convert characters into square matrices of characters.

Figures 4.4a and b show an example of a grammar. The rules in Figure 4.4b are fixed and

do not take part in the evolutionary process, whereas the rules in Figure 4.4a are encoded

in a linear genotype as shown in Figure 4.4c. The characters in the rules are actually

encoded as bit patterns, so that the genotype is a bitstring, and crossover is carried out at bit

level. Starting from a single characterS, each character in the matrix is replaced by a2×2

matrix according to its rule. This transformation process is shown in Figures 4.4d-f. The

rewriting process results in a binary matrix, which is then interpreted as the connectivity

matrix of an artificial neural network. In the case of feedforward connectivity, the network

corresponding to the matrix in Figure 4.4f is shown in Figure 4.4g.

It is clear from this example, that large networks can be built by simply increasing the num-

ber of rewriting cycles. Consequently, large networks can be represented by small geno-

types. The ability of grammar-based methods to create large structures by the repeated

application of transformation rules is certainly an advantage, since for complex networks,

the search space becomes huge and intractable for any search method. This should, in

principle, improve scalability in comparison to direct encoding representations. Indeed,

Kitano [89] reports on results of experiments with the encoder/decoder problem [160] to

compare the performance of direct and indirect approaches, and concluded that on the

experiments performed, the matrix rewriting method consistently outperformed the direct

encoding method used for comparison. However, Siddiqi and Lucas [175] also investigated
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the issue of scalability, and achieved results which contradict those obtained by Kitano in

the same task. Moreover, the reduction in the size of the genotype is obtained at the ex-

pense of expressive power, i.e. not all architectures can be achieved by using rewriting

procedures. As a consequence, small changes in the genotype may lead to large modifica-

tions in the phenotype. This adds to the already difficult task of using information collected

in the phenotype space, where the evaluation actually takes place, to guide the evolution in

the search space of genotypes.

For feedforward artificial neural networks, the generation of a connectivity matrix to rep-

resent the network is inefficient, as large portions of the genotype are not expressed in the

phenotype. For example, it can be realized from Figure 4.4c, that28% of the positions in

the genotype were not used in the construction of the network in Figure 4.4g. This is due to

the fact that only the upper half of the connectivity matrix is actually used to build a feed-

forward network. However, this drawback is not a general characteristic of grammar-based

methods. For example, Boers and Kuiper [26] used a context-sensitive grammar which

does not generate a connectivity matrix. The authors used characters which are interpreted

as neurons and connections, to build the network directly. Nonetheless, the components of

the rules (left andright contexts,predecessorandsuccessor) are not of fixed length as in

Kitano’s case, they are defined bymarkercharacters. As the characters are encoded as bit

patterns, rules can appear and disappear due to the redefinition of characters by the evolu-

tionary operators. This may leave large segments of the genotype unused, and also leave

production rules undefined. In addition, with Kitanos’s method as well as with Boers and

Kuiper’s, there may be duplicated or unused rules (unused because they are not activated

by anypredecessor) in the genotype.

Another issue sometimes neglected is the complicated developmental process from geno-

type to phenotype which has to be executed before the fitness of the individual can be

evaluated. This may correspond to a great fraction of the time consumed in the fitness eval-

uation. It also makes the connection between elements in the genotype and features in the

phenotype obscure. Also, it is virtually impossible to impose constraints to the architecture

if desired.
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Figure 4.4:Illustration of Kitano’s grammar-based method (adapted from [89, 120]). (a) Evolvable

transformation rules to rewrite characters into square matrices. (b) Fixed transformation rules. (c)

Evolvable rules encoded in a linear genotype. (d) Result of the first rewriting cycle. (e) Result of the

second rewriting cycle. (f) Resulting connectivity matrix. (g) Resulting network after interpreting

the connectivity matrix in (f), by reading the entries of each row above the diagonal as outgoing

connections of each neuron.
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Finally, as grammar-based methods do not explicitly encode all the information of the

network in the genotype, they are usually (not always) combined with computationally

expensive training procedures for adjusting the weights at each generation. If no training

process takes place, only those values of weights included in the genotype are used to

build the whole network. This leads to the creation of repeated patterns of weights all over

the network as a consequence of the rewriting cycles. This is the case, for example, of a

technique called cellular encoding, to be discussed in Section 4.5.

Lesson 4Grammar-based methods could benefit from an encoding proce-

dure to represent the weights, allowing them to be evolved simultaneously

with the architecture. The encoding scheme should be independent of the

size of the network, as this is the basic appeal of grammar-based methods.

4.4 Evolving the architecture and the weights

Although biologically plausible, the evolution of the architecture combined with a separate

training procedure has severe drawbacks. Firstly, if training is carried out until complete

stagnation of the learning process, it is computationally very expensive [194, 125, 76, 118,

196]. If partial training is used, evolution may be misled by poor performance evaluation.

Secondly, the evaluation process depends on the initial conditions. As a result, a good

architecture may be discarded due to an unlucky initial set of weights. Thirdly, all limi-

tations of training methods discussed in Section 2.2 apply. For these reasons, methods to

evolve the architecture and the weights concurrently have been proposed. Most of them are

extensions of the methods to evolve the architecture discussed in Section 4.3, with the in-

clusion of the connection weights in the genotype. As a consequence, the search space for

the evolutionary process is considerably increased, and it is an open question whether this

approach is superior or not. However, the efficiency of the search is considerably affected

by the evolutionary operators used. Consequently, it is the task of the designer to develop

specialized evolutionary operators based on a suitable representation, to efficiently evolve

the architecture and the weights simultaneously.
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Similarly to the evolution of the architecture, bitstrings can also be used to evolve the

topology and the weights simultaneously, by encoding the network as a bitstring with a

predefined structure and length, i.e. by allocating a certain number of bits to each feature

of the network, layers, neurons, connections and weights.

For example, Dasgupta and McGregor [41] represent the connectivity ofN neurons using

a N×N binary matrix, where each row and column represent the outgoing and incoming

connections of each neuron, respectively. The matrix is linearized by concatenating the

relevant part of the rows (for a feedforward network only elements above the diagonal are

encoded), and attached to a list of weights. One bit is used to encode each connection, and a

specified number of bits encodes each weight. This separation of the connection space from

the weight space in the genotype makes it more difficult for the offspring to inherit useful

combinations of connections and weights from their parents. Maniezzo [110] improves on

this, by interpreting each neuron as a functional unit and placing all information relevant

to evaluate its output together in the genotype. Maniezzo linearizes the connectivity matrix

by column, and places each weight next to the corresponding connection bit. In both meth-

ods all connections allowed by the connectivity (feedforward or recurrent) are represented,

which is inefficient. To avoid this drawback, Saha and Christensen [162] encode sparse

networks as a list ofsections, where each section includes a neuron identifier linked to a

list of connection fieldsand the bias, and each connection field includes the identifier of the

connected neuron and the weight of the connection. In the three aforementioned methods,

standard one-point crossover is used to evolve the population.

Although simple to implement, bitstring representations suffer from the same size limita-

tions as the binary encoding schemes for training discussed in Section 4.2. To minimize

this problem Dasgupta and McGregor [42] replaced the previous binary encoding with a

real-valued representation of the weights, resulting in a hybrid genotype. The first part is

still the linearized binary connectivity matrix, whereas the second part encodes a list of

floating point numbers. However, the number of neurons encoded in the genotype is still

fixed (not necessarily active in the network, as disconnected neurons can be present).
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In order to explicitly delete elements of the network by the evolutionary operators, Tanget

al. [183] introduced ahierarchicalrepresentation to build multilayer feedforward artificial

neural networks. In his method, all networks in the population can have a maximum num-

ber of hidden layers of equal size. The genotype is divided into three levels: the first level

enables or disables layers, the second level enables or disables neurons, and the third level

stores the weights. The first level is a bitstring of length equal to the maximum number of

layers, where a layer is represented as active (1) or inactive (0). The second level is also

a bitstring representing the active (1) and inactive (0) neurons present in each layer. In the

third level all the weights corresponding to the maximum connectivity possible (all layers

and neurons active and full adjacent layers fully connected) and biases are stored as float-

ing point numbers (see Figure 4.5). One-point crossover is performed separately at each

level. Obviously, the approach does not favor sparse connectivity, as connections can only

be eliminated if neurons or entire layers become inactive. Moreover, flipping of a single bit

by crossover or mutation can render neurons or whole layers inactive, leading to big jumps

in the search space.

Figure 4.5:Hierarchical representation to build artificial neural networks (adapted from [183]).
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To avoid these problems a scheme such as themarker-basedrepresentation proposed by

Miikkulainen et al. [59, 123] can be used to evolve feedforward as well as recurrent net-

works. In this method, the genotype is a circular list ofsegmentsdelimited bystartandend

markers, where each segment represents a neuron with its identifier, incoming connections

(indicated by the identifier of the connected neuron), weights and initial output values. The

number of segments is fixed. Each field within the genotype (including the markers) is

interpreted as an integer, and depending on its value, the field can represent a start marker

or end marker. The interpretation of the other fields depends on their position relative to

the start marker. Start and end markers are necessary because the end of a segment does

not automatically lead to the beginning of another, i.e. there may be unused chunks of the

genotype between markers (this problem has already been discussed in connection with

grammar-based methods in Section 4.3.4). Standard two-point crossover is carried out, and

mutation is implemented as random deviation on the integer values.

The method proposed by Miikkulainenet al. is intended to allow a variable number of

neurons. To accomplish this, the mutation operator may change the value of the start and

end markers, by changing their semantics (e.g. start maker can become an end marker

and vice-versa), resulting in deletion or addition of neurons or connections. However,

this procedure may lead to infeasible connections, as the addressed neuron may not exist

anymore, resulting in a flawed network. Besides, due to crossover and mutation, duplicated

segments may be created in the genotype. Notwithstanding these limitations, the method

has the interesting feature that networks of different sizes can be encoded within a genotype

that only limits the maximum number of neurons (constrained by the maximum number of

segments possible).

Lesson 5Most linear representations treat neurons as natural building blocks,

by organizing the elements necessary to compute their output close together

in the genotype.
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4.5 Genetic programming and artificial neural networks

Although genetic programming is a powerful tool, its application to the evolution of arti-

ficial neural network has been limited by the lack of a good encoding mechanism. It is

true that GP can be used to evolve artificial neural networks by using functions to represent

neurons and weights, and terminals to represent the input to the network [96, 95, 101, 188,

202, 203, 204, 34]. However this approach is not so straightforward as it seems. A simple

example of architecture encoding can illustrate the point. The network in Figure 4.6a can

be encoded as the parse tree in Figure 4.6b. However, the parse tree in Figure 4.6b does

not necessarily induce the network in Figure 4.6a. From Figure 4.6b one can only infer the

network in Figure 4.6c, where the number of hidden and output neurons equals the num-

ber of functions in the parse tree. As a consequence, genetic programming may generate

topologies considerably larger than necessary.

This inconsistency in the genotype/phenotype conversion mechanism is inherent to parse

tree representations, resulting from their limited ability to encode oriented graphs. Conse-

quently, the possibility of using genetic programming to evolve artificial neural networks

with a direct encoding procedure is quite limited. An alternative is to use an indirect repre-

sentation. For example, Gruau [70] developed agrammar-basedmethod, where transfor-

mation rules to write graphs are encoded ingrammar trees. The technique, calledcellular

encoding, has been applied to the evolution of the architecture and the weights of artificial

neural networks [70, 69, 68, 194, 71, 146, 57, 56].

In cellular encoding, the nodes of the grammar tree are symbols representing rules for per-

forming transformations oncells. The cells can be linked to each other forming an oriented

graph. Each cell contains registers to store information such as connection weights, bias,

a recurrent counter, and areading head. The transformations include: cell division and

modification of the cell registers. In asequentialdivision, a parent cell is replaced with

two child cells: the first child inherits the input links of the parent cell, while the second

one inherits its output links, and the first child is connected to the second child. In apar-

allel division, both child cells inherit the input and the output links of the parent cell. The
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Figure 4.6:An example of parse tree representation of the architecture of an artificial neural net-

work. X1 and X2 are variables representing input to the network. (a) Network. (b) Parse tree

representation of the network in (a). (c) Network decoded from parse tree in (b).
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cell division transformations allow the building of the architecture. To assign values to the

bias and connection weights, instructions with parameters are used to modify the bias and

weight registers of cells [69, 68, 194, 71].

The building of the network is carried out by starting with a single cell connected to the

input and output of the network to be developed. The cell reading head points to the root of

the grammar tree. At each step of the developmental process, each cell executes the graph

transformation pointed to by its reading head, and advances the reading head to the left or

right subtree (if the transformation was cell division, the first child points to the right and

the second one points to the left). The order in which cells execute graph transformation is

determined by a First In First Out (FIFO) queue. Once a cell executes its transformation,

it enters the FIFO queue, and the next cell to execute its transformation is the head of the

queue. The registers of the parent cell are copied to the child cells. When the reading head

of all cells executes the operations indicated by the terminals at the leaves of the grammar

tree, the development is complete, the cells become neurons and the links between cells

become connections between neurons. The connection weights and biases are read from

their cell registers. The grammar tree is the genotype of the individual, and is evolved by

genetic programming [69, 68, 194, 71].

The set of transformation rules can be enriched, for example, by other forms of cell division,

instructions for manipulating connections, and especially by an instruction for resetting the

reading head of the cell to the root of the grammar tree. The recurrent counter specifies

how many times the cell reading head can be reset and, similarly to other grammar-based

methods discussed in Section 4.3.4, this resetting procedure allows the construction of large

regular structures, by the repeated application of the same transformation rules encoded in

the genotype.

Cellular encoding is an interesting approach, with some advantages over the grammar

methods discussed in Section 4.3.4. Firstly, all transformation rules encoded in the geno-

type are necessarily used in the developmental process to generate the network. Secondly,

it is a variable size representation, allowing the encoding of any number of transformation
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rules. Thirdly, instructions to evolve the weights and biases are included in the genotype.

Fourthly, with the adequate set of transformation rules, any type of architecture can in

principle be generated. However, cellular encoding has also drawbacks.

For example, originally, Gruau [70, 69] applied the method to the evolution of artificial

neural networks with binary weights in boolean classification problems. In [194, 71], an

instruction was introduced to represent real-valued weights within a certain range. When

executed, the instruction assigns values (given by integer parameters) to the weight regis-

ters (each weight instruction assigns values to weight registers of one cell). Unless such an

instruction is executed for each cell, some of the connection weights receive default values,

and these values can be copied all over the network, by the repeated use of the grammar

tree, provided by the recurrent register. As the appealing feature of grammar-based meth-

ods is the ability of creating large structures from a relatively small genotype, it is clear

that this may lead to a poor diversity of connections weights in the resulting network. In

[70, 69], Gruau suggested the application of a limited form of learning for adjusting the

connection weights in the case of multiple readings of the grammar tree. The procedure,

coineddevelopmental learning, uses a standard learning algorithm in the first reading of

the grammar tree. The new weights are incorporated into the individual for the subsequent

readings of the grammar tree, but they are not included in the genotype to take part in the

evolutionary process.

In addition, similarly to Kitano’s method, the creation of large structures by the repeated

reading of the grammar tree, implies that only some architectures can be achieved, and

also that small changes in the genotype may lead to large modifications in the phenotype.

Cellular encoding is in principle a variable size representation, but in practice the size of

the grammar trees has to be constrained in order to prevent their excessive growth.

Another problem results from the in-depth reading of the grammar tree controlled by the

FIFO queue, in that the same subtree may have a complete different effect on the resulting

network, depending on its position in the grammar tree. When subtrees are swapped by

crossover, the networks resulting from decoding the offspring, may be completely different
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from the networks resulting from decoding the parents. In other words, the grammar tree

representation is strongly epstatic.

Cellular encoding also tends to generate highly interconnected networks. This is a result

of the cell division process, where the child cells inherit all the links of the parent cell. In-

structions to eliminate connections can be implemented, but this may lead to the systematic

elimination of connections in the network due to the recurrent reading of the grammar tree.

Lesson 6The direct use of parse trees to represent artificial neural networks

presents serious drawbacks. Some of the limitations can be bypassed by

using genetic programming to evolve rules for building the network. How-

ever, GP-based methods still lack a good mechanism for representing the

weights.

4.6 Summary

Whether a direct or an indirect representation should be preferred is still an open question.

For problems where a high degree of regularity is expected from the solution, indirect

encoding approaches have some advantages. But if unconstrained weight distribution and

specific constraints on the architecture are desired, direct encoding methods are necessary.

Most direct (and some indirect) approaches treat neurons as the basic functional units, by

putting all necessary information to compute their output close together in the genotype.

The ability to move neurons around in the genotype is an interesting feature to be explored

in the design of a crossover operator. But it may require the redefinition of connections to

comply with connectivity constraints, a procedure difficult to justify unless the network is

visualized as a two-dimensional structure, and an appropriate interpretation is given to the

operation. To address this issue, on the grounds of the lessons learned, a new method based

on a two-dimensional representation is proposed in the next chapter.
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Chapter 5

Two-dimensional representation

5.1 Introduction

The lessons learned from the literature review presented in Chapter 4, allow the following

criteria for a good representation to evolve artificial neural networks to be outlined:

criterion 1 - It is important to constrain the maximum size of the structures being evolved,

either operationally or by design.

criterion 2 - To improve scalability, the connection weights should be represented as real-

valued parameters.

criterion 3 - The representation should allow specialized evolutionary operators to ex-

plore the two-dimensional structure of ANNs.

criterion 4 - Neurons are natural building blocks of artificial neural networks. The evo-

lutionary operators should be able to evolve them by evolving their connectivity, and

also to explore new arrangements of the evolved building blocks in the network.

criterion 5 - The evolutionary operators must be able to change the size of the network

without exceeding the specified maximum limits.
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The literature review also made it clear that current methods do not meet these criteria (at

least not all of them). Some of them do not even fulfill the general requirements of closure,

completeness and scalability. Also, the previous methods do not satisfactorily explore the

two-dimensional nature of artificial neural networks. So, a new method must be designed

to meet all these requirements.

In [140], Poli introducedParallel Distributed Genetic Programming(PDGP). In PDGP, in-

stead of the usual parse tree representation of genetic programming, a graph representation

is used, where nodes are allocated in a two-dimensional grid of fixed size and shape which

constitute the genotype. The grid is particularly useful to evolve structures, like artificial

neural networks, which are oriented graphs with a natural layered structure. Preliminary

results obtained by Poli [141] suggested that with specialized operators and meaningful

building blocks, the grid representation of PDGP could be used to evolve ANNs.

Bearing in mind the aforementioned criteria, in the next sections a new method inspired

by PDGP is proposed for the evolution of artificial neural networks. The new method uses

the grid representation of PDGP to define a new specialized crossover operator to evolve

artificial neural networks.

5.2 Representation

The genotype is an ordered list of nodes. The nodes may be of two kinds:terminal or

neuron. In the first case, the output of the node is a variable containing an input to the

network. In the second case, the node represents a processing element of the encoded

network. When the node is a neuron, it is represented as a list containing all the information

to compute its output, namely: bias, incoming connections and weights. Connections are

represented by indexes, indicating the position of the connected nodes in the genotype

(see Figure 5.1). The order of connections in the list describing the neuron is irrelevant.

Complying with criterion 1, all individuals in the population have the same number of

nodes to constrain the maximum size of the network.
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Figure 5.1:Genotype and neuron description.

This linear genotype is not much different from the linear representations discussed in Sec-

tion 4.4. However, for the application of the crossover operator (see Section 5.3), the linear

representation just described is interpreted as a two-dimensional arrangement of columns

and layers (grid). The nodes of the linear genotype are mapped onto the grid according

to a description table, which defines the number of layers and the number of nodes per

layer. The description table has the same number of nodes as the linear genotype, and all

individuals in the population use the same table. It is a feature of the population, and is not

included in the genotype. The layers and columns of the grid are treated as circular entities,

leading to a toroidal grid (the reason for this design will become clear in the description of

the crossover operator). For example, by using the description table in Figure 5.2b, the in-

dividual in Figure 5.2a is interpreted as the two-dimensional representation in Figure 5.2c,

where connections are indicated by links between nodes.

Any number of layers of different sizes are allowed. Therefore, by using different descrip-

tion tables, different grid representations might be obtained. For example. according to the

tables in Figures 5.3b and d, the same individual in Figure 5.3a can be converted into the

two-dimensional representations in Figures 5.3c and e, respectively. Note that both grids

have the same total number of nodes, distributed over a different number of layers, with a

different number of nodes per layer. That is to say, each description table defines a different

two-dimensional interpretation for the linear genotype. No matter what is the network to
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Figure 5.2: (a) Example of genotype. VariablesX1 andX2 are terminals representing input to

the network. (b) The table describing the number of layers and the number of nodes per layer of

the grid. (c) The two-dimensional representation resulting from the mapping of the nodes of the

genotype in (a), according to the description table in (b).

be evolved, it must comply with the shape constraints specified by the description table.

The nodes in the first layer (input layer) are necessarily terminals representing input to

the network, whereas the nodes in the last layer (output layer) are necessarily neurons,

returning the output of the network. The number of input and output nodes depends on the

problem to be tackled. The remaining nodes, calledinternal nodes, constitute theinternal

layer(s), and they may be either neurons or terminals. As a consequence, although the

size of the genotype is fixed for the entire population, the networks represented may have

different sizes. This happens because terminals may be present as internal nodes from the
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Figure 5.3:(a) Example of genotype. (b) Description table with three layers: 2 nodes in the input

layer, 3 in the second, and 1 in the output layer. (c) Two-dimensional representation produced by

interpreting the genotype in (a) according to the description table in (b). (d) Description table with

four layers: 2 nodes in the input layer layer, 2 nodes in the second, 1 in the third, and 1 in the output

layer layer. (e) Two-dimensional representation resulting of the interpretation of the genotype in (a)

according to the description table in (d).
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beginning, or may be introduced by crossover and mutation (this is discussed in Sections

5.3 and 5.4). To visualize the actual network encoded in the genotype, connections from

terminals in the internal layer can be replaced (and the corresponding terminals removed)

with connections from corresponding terminals in the input layer. Subsequently, multiple

connections from the same node can be merged into a single one, by adding up their weights

(see Figures 5.4a, b, c and d).

There is no restriction about the connectivity whatsoever. Connections between non-adjacent

layers, and connections within the same layer as well as recurrent connections are allowed,

and even multiple connections between the same nodes are permitted (see example in Fig-

ure 5.5).

As the number of nodes in the genotype is constant, the representation meets, at least par-

tially, criterion 1 outlined for a good representation. However, since multiple connections

are allowed, the genotype may grow excessively, reducing the efficiency of the search. The

problem could be eliminated by disallowing multiple connections. But multiple connec-

tions are important, since they increase the range of the connection weights. So, a compro-

mise solution was introduced by limiting the maximum number of multiple connections.

Meeting criterion 2 for a good representation, weights and biases are encoded as floating

point numbers. The biases could have been implemented as weights of connections from

an additional node of constant output, to be evolved as an ordinary connection weight. But,

as it will become clear in the description of the crossover operator, it is irrelevant whether

it is treated as a separate parameter or not.

The grid representation is very similar to the phenotype. To compute the network output

no decoding procedure is necessary. The transformation from genotype to phenotype pre-

sented in Figures 5.4a, b, c and d is only for visualization purposes. The output of the

network can be directly obtained by assigning input values to the terminals, and evaluating

the neurons according to their order in the genotype.
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Figure 5.4:(a) Linear genotype. Note that node 5 contains the same terminal as node 1. (b) Grid

description table. (c) Resulting two-dimensional representation. (d) Corresponding network after

merging the connections between node 5 and 6, with the connection from node 1 to 6, by adding up

their weights and removing node 5. Note that, due to the presence of a terminal in the internal layer,

the resulting network has only two hidden neurons, whereas the genotype has three internal nodes.
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Figure 5.5:Example of feedback and multiple connections. (a) Genotype. (b) Description table.

(c) Two-dimensional representation.

5.3 Crossover operator

The network representation described in the previous section is a two-dimensional graph

representation. Consequently, it is natural to define a crossover operator based on this

structure (see criterion 3 for a good representation). Moreover, neurons are functional units

of artificial neural networks, and it is important that recombination not only reorganizes

these natural building blocks, but also creates new ones (see criterion 4). Therefore, in this

work, a two-dimensional crossover operator is proposed, which works on two levels: at the

level of the grid and at the level of the neuron.

The crossover operator works on the two-dimensional interpretation of the parents, by ran-

domly selecting a nodea in the first parent and a nodeb in the second parent (see Fig-

ure 5.6a), and replacing nodea in a copy of the first parent (the offspring). Depending on

the types of nodea and nodeb, the replacement is carried out as follows:
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Both nodes are terminals: This is the simplest case, nodeb replaces nodea, and there is

no change either in the topology or in the weights of the network.

Nodeb is a terminal and nodea is a neuron: In this case, nodeb also replaces nodea,

but the complexity of the network is reduced, because a neuron is removed from the

network, meeting criterion 5.

Nodeb is a neuron and nodea is a terminal: In this situation, the crossover operation

increases the complexity of the network, by replacing a terminal with a neuron and

increasing the number of hidden neurons in the network (meeting again criterion 5).

But before nodeb replaces nodea in the offspring, each of its connections is analyzed

and possibly modified, depending on whether they are connections from terminals or

neurons.

This can be visualized in terms of graphs. As artificial neural networks are oriented

graphs, a neuron is a special case of subgraph (see Figure 5.6b), where the arcs of

the subgraph represent incoming connections to nodeb. The idea is to pick up the

subgraph represented by nodeb to replace nodea in the offspring. But the subgraph

is not transferred rigidly to the offspring, its arcs are modified according to whether

they originally represented connections from terminals or neurons.

• If the connection is from a neuron, the arc corresponding to this connection is

”deformed”, so that the arc still represents a connection from the same node,

when nodeb is transferred to the position of nodea. For example, the arcs

representing connections from node 9 and 13 are deformed to still represent

connections from these same two nodes (see Figures 5.6b and c),

• If the connection is from a terminal, the corresponding arc is not modified when

nodeb is transferred to the position of nodea (e.g. the connection from node

10). If the arc leads to a connection from a non-existent node when nodeb

is transferred to the position of nodea, the arc is wrapped around the layer

(remember that layers are circular). For example, the arc corresponding to the

connection from node 8 is wrapped around to become a connection from node
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1 (see Figures 5.6b and c). The same wrapping-around procedure is applied to

the columns (the grid is toroidal), if a node below the input layer or above the

output layer is required.

After this transformation of arcs, the transformed subgraph is transferred into the

position of nodea in the offspring (see Figure 5.6d). Of course, all this manipulation

of connections only makes sense, by considering the network as a two-dimensional

structure.

This graph transformation is actually carried out in the list which represents node

b, by redefining the indexes representing the connected nodes. This redefinition of

indexes is described as follows:

• If the connection is from a neuron, the index of the connected node in the list

describing nodeb is not modified. That means, the connection will still be from

the same node after nodeb replaces nodea in the offspring.

• If the connection is from a terminal, the index is modified to point to another

node, as if the connection had been rigidly translated from nodeb to nodea.

That means, the same horizontal and vertical displacement that exists between

nodesa andb is applied to translate horizontally and vertically each connec-

tion of nodeb coming from a terminal. For example, in Figure 5.7, nodea

is one layer below and one column to the right of nodeb. Consequently, the

connection between node 10 and nodeb is transformed into a connection be-

tween node 7 and nodeb (see Figures 5.7b and c). Should the rigid translation

of the connection point to a non-existent node outside the limits of the layer

or column, the index of the connected node is modified as if the connection

had been wrapped around the layer or column. For instance, the connection

between node 8 and nodeb is transformed into a connection between node 1

and nodeb (Figures 5.7b and c).
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Here a distinction between recurrent and feedforward connectivity must be made.

After the transformation of connections in nodeb, loops might be created in the

offspring. If a feedforward architecture is desired, connections from a higher order

node to a lower one are deleted.

This procedure for connection inheritance aims at preserving as much as possible the

information present in the connections and weights.

Both nodes are neurons:This is the most important case. By combining two neurons,

the topology and the weights of the network can be changed. After implementing the

modifications in the connections of nodeb as described in the previous case, nodes

a andb are combined. This is carried out by selecting two random crossover points,

one in each node, and replacing the connections to the right of the crossover point in

nodea with those to the right of the crossover point in nodeb. This creates a new

node to replace nodea in the offspring (see Figure 5.8). Note that the crossover point

is only selected between connections, it does not separate the weight from the index

of the connected node.

This process can easily create multiple connections between the same two nodes.

They are very important because their net effect is a fine tuning of the connection

strength between two nodes. If more than the allowed maximum number of multiple

connections are created, some of them are deleted before the replacement of nodea

in the offspring.

The crossover operator just defined, allows nodes to be transferred from one position to

another in the grid (meeting criterion 4). However, this procedure requires connections to

be redefined, otherwise many of them would have to be deleted due to connectivity con-

straints, leading to loss of genetic material. The mechanism for modifying connections

described, was designed to adress this issue. Although other forms of dealing with con-

nections are possible, preliminary experiments with the odd-2 (XOR), odd-3, odd-4, and

odd-5 parity problems (in the odd-n parity problems, the network is required to return 1

if there is an odd number of 1s in the input, and 0 otherwise), led to the conclusion that
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Figure 5.6:(a) Two-dimensional representation of the parents. For clarity, only connections rele-

vant to the operation are shown. (b) Subgraph representing nodeb. (c) Transformed subgraph. (d)

Offspring generated by transferring the transformed subgraph to the position of nodea.
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Figure 5.7:(a) Two-dimensional representation of the parents. (b) Nodeb. (c) Copy of nodeb with

modified connections. Connections of nodeb whose indexes indicated connections from terminals

received new indexes. (d) Offspring generated by replacing nodea with modified nodeb.
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Figure 5.8:Combination of two neurons. (a) Nodea. (b) Nodeb . (c) New node created to replace

nodea in the offspring. Note the multiple connections created.

it is more effective to deal with connections from neurons and connections from terminals

differently. Four different variations of crossover were investigated:

Variation 1: This is the crossover operator just described. The results are summarized in

Table 5.1. Column 2 represents the average number of generations (standard devia-

tion in brackets). Columns 3, 4, 5 and 6 show the minimum, average, maximum and

standard deviation for the number of neurons of the networks evolved, respectively.

Columns 7, 8, 9 and 10 give the minimum, average, maximum and standard devia-

tion for the number of connections of the networks evolved, respectively. Column

11 shows the computational effort, i.e. the minimal number of fitness evaluations

necessary to obtain a solution with 99% probability in repeated runs [95].

Variation 2: In this form, all connections of nodeb are rigidly transferred. In the four

tasks, the performance of this variation, as measured by the computational effort,

was inferior to that of the previous form (see Table 5.2).
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Variation 3: In this case, none of the connections of nodeb are modified. In three of the

experiments carried out, the results were inferior to those obtained with the first form

of the crossover operator (see Table 5.3).

Variation 4: In this variation, connections from neurons are transferred, whereas connec-

tions from terminals are not modified. Once more, the performance was inferior to

that obtained with the crossover operator defined in this work (see Table 5.4).

These results suggest that artificial neural networks construct internal representations by

building connections between neurons. Consequently, it is important to keep them as much

as possible, by keeping them pointing to the same node. On the other hand, by moving

connections from terminals, there is a chance that they are transferred to neurons by the

crossover operator, helping to build new internal representations.

Nodes in the input layer are made unavailable for selection in the first parent. Firstly,

because in the case of feedforward connectivity, the replacement of a terminal in the input

layer would lead to an infeasible individual if a neuron were transferred to the input layer.

Secondly, because it favors evolution toward less complex networks. This happens because

terminals selected from the input layer of the second parent can replace neurons in the first

parent, but not vice-versa. This feature is explored in the experiments reported in the next

chapter.

The proposed crossover operator does not separate the index of the connected node from

the corresponding weight. Consequently, it is irrelevant to define the bias as an ordinary

weight or not.
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Table 5.1:Summary of the results on binary classification problems, using the first variation of the

crossover operator.

TASK GEN (σ) NEURONS CONNECTIONS EFFORT

min avg max σ min avg max σ

XOR 2.7 (1.9) 6 9.6 10 0.8 15 24.3 31 2.4 1,800

3 parity 28.0 (32.6) 3 8.1 10 1.6 13 29.5 41 5.8 19,800

4 parity 205.9 (156.6) 4 7.8 10 1.4 23 40.4 59 7.9 163,200

5 parity 412.6 (129) 4 7.2 9 1.4 26 47.2 65 10.3 845,000

Table 5.2:Summary of the results on binary classification problems using the second variation of

the crossover operator.

TASK GEN (σ) NEURONS CONNECTIONS EFFORT

min avg max σ min avg max σ

XOR 2.2 (2.3) 4 9.4 10 1.1 12 23.7 28 2.8 2,400

3 parity 33.7 (69.2) 5 8.1 10 1.4 19 28.5 43 4.1 21,000

4 parity 232.4 (162.7) 3 8.1 10 1.6 18 40.0 53 7.9 219,600

5 parity 458.0 (97.6) 7 8.8 10 0.9 44 51.8 58 4.2 1,689,800
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Table 5.3:Summary of the results on binary classification problems using the third variation of the

crossover operator.

TASK GEN (σ) NEURONS CONNECTIONS EFFORT

min avg max σ min avg max σ

XOR 2.4 (2.6) 8 9.5 10 0.7 19 24.1 28 2.0 2,400

3 parity 55.2 (107.8) 3 7.8 10 2.0 12 28.5 52 7.2 25,800

4 parity 244.5 (191.3) 4 7.2 10 1.7 22 37.6 52 7.9 168,000

5 parity 415.4 (150.5) 4 7.3 10 1.9 29 44.5 63 9.4 813,200

Table 5.4:Summary of the results on binary classification problems using the fourth variation of

the crossover operator.

TASK GEN (σ) NEURONS CONNECTIONS EFFORT

min avg max σ min avg max σ

XOR 2.4 (3.3) 1 9.1 10 2.0 5 23.2 29 4.7 2,000

3 parity 56.2 (121.8) 2 8.0 10 2.0 9 27.6 44 5.8 18,400

4 parity 309.5 (156.6) 4 7.7 10 1.7 21 38.3 55 8.0 336,000

5 parity 446.5 (110.8) 4 7.5 9 1.4 29 44.7 52 6.5 1,520,000
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5.4 Mutation

The representation allows the implementation of the whole arsenal of mutation opera-

tors associated with evolutionary methods applied to artificial neural networks: addition

and deletion of connections, crossover of an individual with a randomly generated one,

crossover of a randomly selected node with a randomly generated one, addition of Gaus-

sian noise to the weights and biases, etc.

The deletion or addition of nodes is not allowed, as the size of the genotype is constant.

However, a neuron may be replaced with a terminal or vice-versa, and this may be used to

reduce or increase the complexity of the network, within predefined limits.

Crossover and mutation alone can, in principle, generate solutions with varying degrees of

complexity. However, unless a term is included in the fitness function to penalize the com-

plexity of the network, there is no guarantee that parsimonious solutions will be achieved.

Penalty terms require problem-dependent coefficients which are difficult to set. In this

work, a different procedure was adopted, which does not involve any arbitrary parameter.

After a 100% correct solution is found, one neuron is replaced with a terminal in each

individual of the population, and the evolutionary process is resumed. This procedure is

repeated every time a new solution is found, until the specified number of generations is

achieved, or a sufficiently small architecture (according to a condition predefined by the

user) is evolved. This strategy generates solutions of varying degrees of complexity, al-

lowing the user to decide which solution is preferable: a complex one, possibly presenting

fault tolerance, or a parsimonious one, with probably more generalization power.

Actually, this procedure may be viewed as a special form of mutation to be applied to the

population as a whole at each generation with probability 1, if a new solution is found, or

0 otherwise.

Obviously, this procedure has a cost: the new population created by pruning should be

reevaluated, otherwise the selection of parents for the next generation would be disturbed.

However, as there is usually a gap of many generations between successive solutions, it
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is also possible to carry out selection without reevaluation of the individuals. This may

be interpreted as a perturbation in the evolutionary process. Both forms of pruning are

explored in the experiments discussed in the next chapter.

5.5 Summary

On the grounds of thelessonslearned in Chapter 4, several criteria for a good representation

and good operators for the evolution of artificial neural networks were outlined. Based on

these criteria, a new two-dimensional representation and a new crossover operator were

proposed. The new approach is a direct encoding scheme, able to evolve the architecture

and the weights simultaneously. The efficiency of the method proposed has been evaluated

in previous work [151, 149, 150, 148], on well studied benchmark problems found in the

literature. The results of these experiments are discussed in the next chapter.
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Chapter 6

Experimental results with the

two-dimensional representation

6.1 Introduction

Any method proposed, must work with typical parameters of genetic algorithms. There-

fore, conventional procedures for selection, as well as crossover and mutation probabilities

were used in the experiments. No optimization on the parameters of the genetic algorithm

has been undertaken. In all experiments, the following procedure and parameter settings

were used:

• Generational genetic algorithm;

• Tournament selection of parents (tournament size = 4);

• Mutation by crossover with a randomly created individual;

• Crossover and mutation probability of 70% and 5%, respectively;

• Maximum of 5 multiple connections per pair of nodes.
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The maximum value for multiple connections was selected in order to operationally con-

strain the search, by keeping the value of the weights within a limited range, and preventing

the bloat of the genotype by an excessive number of multiple connections.

All individuals in the initial population were initialized with random connectivity. How-

ever, it was assured that each node was directly or indirectly connected to the input and

output layers, i.e. each node (including input nodes) was provided with a random connec-

tion to a higher order node (if available), and every neuron was provided with a random

connection from a lower order node.

6.2 Binary classification problems

In these experiments a population of 200 individuals was evolved for a maximum of 500

generations. For each problem, 50 runs were performed with different random seeds. Un-

less otherwise stated, a single internal layer with 10 nodes was used. Initially, no termi-

nals were present in the internal layer. The weights and biases were randomly initialized

within the range [-1.0, +1.0]. The mean square error of the output of the network for

all input patterns was used as fitness function. A threshold activation function was used,

f(x) =

{
+1 if x ≥ 0

−1 otherwise
. The exclusion of terminals of the internal layer in the initial

population had the objective of demonstrating the ability of the method to reduce the com-

plexity of the solutions.

To show the performance of the method proposed, it was applied to a test suite of standard

benchmarks present in the literature: the odd-2 (XOR), odd-3, odd-4 and odd-5 parity

problems (see Section 5.3), and the 4-symmetry and theT-C problems. In the 4-symmetry

problem, the network is required to classify a 4 bits input bitstring as symmetric around its

center or not [160, 110]. In theT-C task, the network is required to identify the characters

T andC represented by a 3×3 bit template, placed in any position and orientation within a

4×4 matrix (see Figure 6.1). In this case, in order to compare results with other methods,

a single internal layer with 16 nodes was used (all nodes initially occupied by neurons).
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Figure 6.1:Templates for theT-C task. (a) Templates for the characterT. (b) Templates for the

characterC.
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The results are summarized in Tables 6.1 to 6.4. Column 2 represents the average number of

generations (standard deviation in brackets). Columns 3, 4, 5 and 6 show the minimum, av-

erage, maximum and standard deviation for the number of neurons of the networks evolved,

respectively. Columns 7, 8, 9 and 10 give the minimum, average, maximum and standard

deviation for the number of connections of the networks evolved, respectively. Column 11

shows the computational effort (see Section 5.3).

Table 6.1 presents the results for the first solutions obtained in each run, i.e. the evolu-

tionary process was interrupted as soon as a solution was found. Table 6.2 represents the

results obtained when the evolution was carried out to the maximum number of generations

specified, i.e. even if a solution was found, the search was not interrupted.

From the results in Table 6.1 one can realize that, with the exception of the XOR problem,

the first networks evolved already present an average reduction in the number of hidden

neurons, as compared to the number of hidden neurons at generation zero (remember that

no terminals were presented as internal nodes initially). The XOR problem is an easy task,

and the solutions were found so fast that there was not enough time for the evolutionary

process to reduce the number of neurons. The ability of the method to evolve parsimonious

solutions is more evident in Table 6.2, where a substantial reduction in the number of

neurons was achieved in all tasks. This confirms that the proposed crossover operator

favors solutions of lower complexity as argued in Section 5.3.

It must be emphasized that all networks in the initial population were much bigger than

the smallest solutions obtained. In the case of the XOR, 3-parity, 4-parity and 5-parity,

they were 10, 5, 5 and 3 times bigger than the smallest solutions achieved, respectively.

Obviously, to find minimal solutions one should initialize the population with individuals

of varying degrees of complexity, by using a random mix of terminals and neurons in the

internal layers. This approach is explored for a different task in Section 6.3.

The results for the parity problems compare very favorably with those reported in the evo-

lutionary computation literature in terms of generations to find a solution. For example, to

solve the XOR problem the following numbers of generations to attain solutions have been
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Table 6.1: Summary of the results on the binary classification problems using a single internal

layer, obtained by stopping the evolutionary process when a first solution was found.

TASK GEN (σ) NEURONS CONNECTIONS EFFORT

min avg max σ min avg max σ

XOR 2.7 (1.9) 6 9.6 10 0.8 15 24.3 31 2.4 1,800

3 parity 28.0 (32.6) 3 8.1 10 1.6 13 29.5 41 5.8 19,800

4 parity 205.9 (156.6) 4 7.8 10 1.4 23 40.4 59 7.9 163,200

5 parity 412.6 (129) 4 7.2 9 1.4 26 47.2 65 10.3 845,000

Symmetry 124.9 (152.4) 4 7.2 10 1.7 20 32.7 49 6.6 75,000

T-C 184.7 (170.2) 6 10.1 13 2.0 58 94.4 139 20.8 146,000

Table 6.2: Summary of the results on the binary classification problems using a single internal

layer, obtained by carrying out the evolution to the maximum number of generations specified.

TASK GEN (σ) NEURONS CONNECTIONS EFFORT

min avg max σ min avg max σ

XOR 280.2 (132.2) 1 2.6 5 1.0 5 9.9 17 3.0 98,800

3 parity 299.9 (121.7) 2 3.5 7 1.0 10 16.5 28 4.1 99,200

4 parity 373.5 (116.1) 2 5.8 9 1.6 14 31.0 54 8.3 292,200

5 parity 456.6 (78.6) 3 6.3 9 1.5 21 40.2 61 9.1 986,000

Symmetry 295.0 (152.1) 3 4.6 8 1.3 13 22.1 34 4.5 268,200

T-C 401.1 (120.6) 4 7.5 12 1.8 37 69.3 100 16.1 288,600
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reported: 50 [127], 100 [162], 22 [166]. For the odd-4 parity, Zhang and Mühlenbein [202]

report a solution achieved in 9 generations, but a population of 1,000 individuals was used,

and the authors used training by a hillclimbing procedure at each generation. The resulting

minimal network had 6 neurons in the hidden layer and 23 connections, to be contrasted to

the solution with 4 hidden neurons and 23 connections obtained with the two-dimensional

approach.

The scalability of the method can be assessed by comparing the computational effort for

the odd-3, 4 and 5 parity problems to those reported using other methods. For example,

Koza [95] using GP with a specialized function set including Boolean functions, reports an

effort of 80,000 for even 3-parity, 912,000 for odd-4 parity, and 7,840,000 for even-5 parity

(the odd and even parity are simply complements to each other).

To illustrate the conversion of the two-dimensional representation into a network, typical

solutions obtained for the XOR and the odd-3 parity problem using a single internal layer

are shown in Figures 6.2 and 6.3, respectively. Note how in both cases, most of the neurons

in the internal layer (which was initialized with neurons exclusively) were replaced with

terminals during the evolutionary process, to confirm the bias provided by the crossover

operator.

For theT-C task, the two-dimensional method produced a solution with a 16-4-1 topology

and 34 connections. In comparison, Braun and Zagorski [30] report a 11-1-1 architecture

with 22 connections, and McDonnell and Waagenet al. [114] report a 13-6-1 topology

with 34 connections. The fact that the two-dimensional method was unable to reduce the

complexity of the networks any further might be a consequence of the high proportion of

terminals in the internal layer of the individuals of the population after some point in the

evolution. A new battery of 50 runs was then carried out, using the pruning procedure

introduced in Section 5.4 to search for an even more parsimonious solution. The pruning

procedure without reevaluation of the population yielded a solution with a 13-1-1 topology

and 23 connections. The pruning procedure with reevaluation produced a 11-1-1 topology

with 14 connections (see Figure 6.10). This means that, in the minimal solution, 96% of the
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Figure 6.2: Typical solution for the XOR problem. For visualization purpose, the node in the

output layer has been centered. Values in the circles are biases. (a) Two-dimensional representation

with 10 internal nodes in a single layer. (b) Corresponding network, after grouping connections

from the same terminals by adding up their weights. One neuron with no outgoing connections was

also eliminated.

408 possible connections within a feedforward architecture of 16-16-1 and 5 unnecessary

input neurons were not used. This testifies the efficiency of the pruning strategy with

reevaluation. This is better visualized by comparing the evolution of the average number

of hidden neurons in the population, with and without pruning, for the run which produced

the minimal solution.

As can be realized from Figure 6.4, without pruning the average number of hidden neurons

was reduced to about 10 neurons. However, there was not enough selective pressure to force

a further reduction. The result for the same run using pruning with reevaluation presented

in Figure 6.5 shows distinct instants in the evolutionary process, at generations 111 and

240, where solutions were found, leading to the pruning of a neuron in each member of

the population, and forcing the reduction in the average size of the encoded networks.
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Figure 6.3:Typical solution for the odd-3 problem. (a) Two-dimensional representation with 10

internal nodes in a single layer. (b) Corresponding network, after grouping connections from the

same terminals by adding up their weights.
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From generation 268 to 492, a cascade of additional solutions resulted in a substantial

reduction on the average number of hidden neurons down to about 1 neuron. The evolution

using pruning without reevaluation is shown in Figure 6.6. In this case, the procedure was

not so effective. When a first solution was found at generation 111, a neuron was also

deleted from every member of the population, but the individuals were not reevaluated.

As a consequence, it took longer for the evolutionary process to find a new solution at

generation 293. Afterwards, a sequence of solutions from generation 305 to 426 were able

to reduce the average number of hidden neurons to about 2.5 neurons (although in the end

this number increased again to about 6 neurons). The efficiency of the pruning strategies

can also be visualized by inspecting Figures 6.7, 6.8 and 6.9, which show the evolution

of the average number of hidden neurons for the best individual in the population over 50

runs.

The generalization power of the minimal solution evolved for theT-C problem was tested.

This was performed by inverting one bit of the 16 bits of each character, and presenting

them to the network. The network was still able to identify the noisy templates in 82%

of the 512 cases. One might be led to the conclusion that the minimal solution shown

in Figure 6.10 is telling one character from the other by simply counting the number of

active bits, 5 for theT character, and 7 for theC character. This is not the case, since in

some cases the number of active bits of both templates are the same, as the corresponding

terminals in the input layer of the network are disconnected. In Figure 6.11a, the unused

bits are indicated in the 4×4 matrix which contains the templates for both characters. In

Figures 6.11b and c, two different pairs of templates are shown, where both characters have

the same number of active bits. This suggests that the network makes the distinction not

only by the number of active bits, but also by their position in the matrix.

Does the number of internal layers have any effect on the efficiency of the two-dimensional

method? As was pointed out in Section 2.3, feedforward artificial neural networks with a

single hidden layer are universal approximators. But this does not mean that more hidden

layers will not do a better job. To answer this question, 50 additional runs were carried out

in the same tasks, with the same number of internal nodes used in the previous experiments
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Figure 6.4:Evolution of the average number of hidden neurons of the individuals of the population

without pruning.

Figure 6.5:Evolution of the average number of hidden neurons of the individuals of the population

using pruning with reevaluation.

Figure 6.6:Evolution of the average number of hidden neurons of the individuals of the population

using pruning without reevaluation.
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Figure 6.7:Evolution of the average number of hidden neurons of the best individual in the popu-

lation without pruning. Average over 50 runs.

Figure 6.8:Evolution of the average number of hidden neurons of the best individual in the popu-

lation using pruning with reevaluation. Average over 50 runs.

Figure 6.9:Evolution of the average number of hidden neurons of the best individual in the popu-

lation using pruning without reevaluation. Average over 50 runs.
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Figure 6.10:Minimal solution for the T-C task. (a) Two-dimensional representation. (b) Corre-

sponding network, after grouping connections from the same terminals by adding up their weights.
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Figure 6.11: (a) The unused bits in the input to the network in Figure 6.10b are indicated by

numbers in the4×4 matrix. (b)T andC templates with the same number of active bits. (c) Another

example of templates with the same number of active bits.

now equally divided into two internal layers. The results shown in Tables 6.3 and 6.4

indicate a slightly better performance with a single layer in these problems. It seems that,

for these tasks, the use of more than one internal layer to build more than one level of

internal representation in the networks, is actually counter-productive for the search. In

other tasks the situation might be different. In any event, the difference is not substantial,

indicating that it is possible to use more than one internal layer if necessary or desired (this

subject is further investigated with another set of experiments discussed in Section 6.3).

A typical solution for the symmetry problem using two internal layers is shown in Figure

6.12.
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Table 6.3:Summary of the results on the binary classification problems using two internal layers,

obtained by stopping the evolutionary process when a first solution was found.

TASK GEN (σ) NEURONS CONNECTIONS EFFORT

min avg max σ min avg max σ

XOR 2.6 (2.0) 7 9.6 10 0.7 23 30.5 37 3.6 1,800

3 parity 29.8 (35.7) 3 8.2 10 1.4 16 34.2 46 6.4 22,000

4 parity 233.9 (158.6) 4 7.8 10 1.6 22 44.5 62 9.6 196,800

5 parity 436.1 (123.3) 7 8.5 10 0.9 39 52.7 63 7.4 1,386,000

Symmetry 185.1 (170.3) 3 7.1 10 1.7 15 36.0 50 9.9 136,000

T-C 201.0 (174.9) 5 9.8 14 1.8 43 98.0 137 21.8 270,400

Table 6.4:Summary of the results on the binary classification problems using two internal layers,

obtained by carrying out the evolution to the maximum number of generations specified.

TASK GEN (σ) NEURONS CONNECTIONS EFFORT

min avg max σ min avg max σ

XOR 289.6 (125.1) 1 2.9 5 2.7 5 10.9 17 2.7 100,200

3 parity 309.5 (138.5) 2 4.0 6 1.2 10 18.5 32 4.7 99,600

4 parity 344.1 (131.4) 4 6.5 9 1.6 21 36.5 57 8.6 298,800

5 parity 458.2 (84.5) 4 7.2 10 1.7 31 45.0 63 9.7 1,500,000

Symmetry 347.4 (138.9) 2 4.7 8 1.4 12 23.5 37 6.0 298,200

T-C 377,2 (131.6) 4 7.9 11 1.8 34 76.5 118 20.3 293,400
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Figure 6.12:Minimal solution for the symmetry problem. (a) Two-dimensional representation

with 10 internal nodes distributed over two internal layers with 5 nodes each. (b) Corresponding

network, after grouping connections from the same terminals by adding up their weights.
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6.3 Pole-balancing problem

This problem is a well-studied benchmark for evolving neural controllers [193, 194, 71, 3,

198, 124, 21, 35, 163, 33]. The task consists of balancing a pole hinged in the center of a

moving cart, by applying a force to the cart exclusively. The pole is only allowed to move

in a vertical plane and the cart moves in a one-dimensional track (see Figure 6.13).

The only forces acting on the system are a control force applied to the cart and gravity. The

mass of the pole is uniformly distributed along its length. The other dimensions of the pole

are negligible compared to its length. Under these assumptions, the equations of motion

and the usual parameter setting for the coupled cart-pole system are:

θ̈ =
msg sin θ − cos θ[f + mpLθ̇2 sin θ]

(4/3)msL−mpL cos2 θ
,

ẍ =
f + mpL[θ̇2 sin θ − θ̈ cos θ]

ms
,

where

x is the cart position as measured from the center of the track (m),

ẋ is the cart velocity (m/s),

ẍ is the cart acceleration (m/s2),

θ is the inclination of the pole to the vertical (radians),

θ̇ is the angular velocity of the pole (radians/sec),

θ̈ is the angular acceleration of the pole (radians/sec2),

L is half the length of the pole = 0.5 m,

mp is the mass of the pole = 0.1 kg,

ms is the mass of the cart-pole system = 1.1 kg,

f is the control force applied to the cart (N),

g is the gravity acceleration = 9.8 m/sec2
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Figure 6.13:Cart-pole system.

The controller must provide a sequence of left and right pushes to the cart, in order to keep

the system within specified limits. Different strategies must be compared exclusively on

their net result: failure or success. There is no way of knowing in advance which individual

action contributes to a successful or unsuccessful control strategy in the end.

The state of the cart-pole system is defined by four variables representing the position and

velocity of the cart, and the angle of the pole to the vertical and its angular velocity. The

equations of motion were numerically integrated to give the new state of the system at

each time step ( Euler’s method with a time step of 0.02s was used). A failure signal was

triggered when the angle of the pole or the position of the cart exceeded specified limits.

The limit for the cart position was±2.4 m, and the limit for the angle of the pole varied

according to the experiment (details are given further in the text).

At each generation, the fitness of the individuals in the population was evaluated as the

number of time steps in which they were able to keep the pole balanced and the cart in

the track. At each time step, the network received as input the four state variables of the

cart-pole system, and returned as output the force to be applied to the cart. Before being

introduced as inputs to the network, the state variables were normalized to be in the range

±1.0 using the following normalization factors [194]: position of the cart (2.4m), speed

of the cart (1.5m/s), angle of the pole (specified limit) and angular speed of the pole (115

degrees/s). The speed of the pole and of the cart were not limited during simulation, but

they were still normalized by these factors.
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In these experiments a population of 100 individuals was evolved for a maximum of 100

generations, with the evolution being interrupted as soon as a solution was found. All

individuals were initialized with 10 internal nodes. Experiments with one and two internal

layers were carried out. The weights and biases were randomly initialized within the range

[-1.0, +1.0], and the hyperbolic tangent was used as activation function.

In order to compare the performance of the two-dimensional representation to indirect

and direct encoding methods, two sets of experiments were carried out using different

approaches.

6.3.1 First set of experiments

In [194, 71], Gruauet al. used cellular encoding to evolve a neural controller for the cart-

pole system using two different control actions: abang-bangand acontinuouscontrol

force. In the first case, the forcef can only take two discrete values: +10 or -10. In the

second case, it can take any value in the range [-10.0,+10.0]. The fitness of an individual is

given by the number of time steps in which the system is controlled starting from different

initial states (see Table 6.5). A solution is a network which can control the system over all

initial states for 1,000 time steps. The limit for the angle of the pole was set at 36 degrees.

Tables 6.6 and 6.7 show a summary of the results of 50 independent runs for both control

actions. Column 1 indicates the shape of the grid used (control action in brackets). Column

2 represents the average number of generations (standard deviation in brackets). Columns

3, 4, 5 and 6 show the minimum, average, maximum and standard deviation for the number

Table 6.5:Combinations of initial states for the cart and pole adapted from [194].

Cart position 0 +2.14 -2.14 +2.4 -2.4 0 0 0 0 +2.4 -2.4

Cart velocity 0 0 0 0 0 0 0 0 0 0 0

Pole position 0 0 0 -27 +27 +13.5 -13.5 +27 -27 0 0

Pole velocity 0 0 0 0 0 +32.5 -32.5 0 0 -65 +65
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of hidden neurons of the networks evolved, respectively. Columns 7, 8, 9 and 10 give the

minimum, average, maximum and standard deviation for the number of connections of the

networks evolved, respectively. Column 11 shows the computational effort.

In the experiments with the binary classification problems, the individuals of the initial

population had no terminals in the internal layers. On the pole-balancing problem, the

effect of the mix of neurons and terminals in the layers was investigated, by varying the

proportion of terminals and neurons in the internal layers of the individuals of the initial

population.

The results shown in Tables 6.6 were achieved using a random assignment of terminals and

neurons in the internal layers of the individuals in the initial population. This implies a

random distribution of networks of different sizes in the initial population. The grid with

a single layer performed slightly better in the continuous case, while the grid with two

internal layers fared better in the bang-bang case.

As can be realized from the average number of hidden neurons of the networks evolved,

it seems to be wiser to initialize the population with individuals representing encoded net-

works with fewer hidden neurons, by using a higher proportion of terminals in the internal

layers of the individuals in the initial population. To check this, experiments were carried

out with an average of 75% of the internal nodes assigned to terminals. The results of these

runs are shown in Table 6.7.

As expected, by using smaller networks, the computational effort to evolve a solution was

reduced. The consequence of these results is that, if by any specifica priori information

about the problem being solved, small solutions can be expected (small in comparison

to the size of the grid used), it is possible to speed up the search by introducing more

terminals in the internal layers of the grid. Consequently, a large grid can be used to

constrain the maximum size of the architectures evolved, while still starting the search

with small networks.
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In order to compare the results obtained with the two-dimensional representation to those

reported in [194, 71], a generalization test was performed for all solutions found, by count-

ing the number of successful control runs of the cart-pole system for 1,000 time steps. Each

solution was required to control the system starting from 625 different initial states, defined

by each normalized state variable taking the values:±0.9,±0.5 and 0.

The results are summarized in Tables 6.8 and 6.9. The second column represents the num-

ber of fitness evaluations to achieve a solution during the learning process (standard devia-

tion in brackets). Columns 3, 4 and 5 show the best, mean, and worst number of successful

control runs, respectively. Column 6 represents the standard deviation of the generalization

test.

In both cases the two-dimensional method considerably outperformed cellular encoding in

terms of number of fitness evaluations to achieve a solution. The results are even more

impressive if one considers the size of the populations used in the cellular encoding ex-

periments: 2,048 in [194] and 4,096 in [71]. In [194], the number of individuals in the

population is almost of the same size as the number of fitness evaluations to achieve a so-

lution for the bang-bang case, indicating that a good approximation was already present in

the initial population. In [71], the size of the population is considerably greater than the

number of evaluations to achieve a solution in the continuous case, which means that the

solution was already present in the initial population. It may be also pointed out that with

both control actions, the number of fitness evaluations to achieve a solution with the two-

dimensional representation were of the same order of magnitude. This suggests that the

proposed method scales up better than cellular encoding with the difficulty of the problem.

The generalization power of the solutions obtained is superior to that reported in [71], but

inferior to those reported in [194]. This may be a consequence of the different activation

functions used (in [194] the authors used a clipped linear activation function between -1 and

1). However, a more extensive investigation should be carried out to clarify the situation.
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Table 6.6: Summary of the results on the pole-balancing problem using an initial random pro-

portion of terminals and neurons in the internal layers, obtained by interrupting the evolutionary

process when a first solution was found.

TOPOLOGY GEN (σ) NEURONS CONNECTIONS EFFORT

min avg max σ min avg max σ

4-10-1 (bang-bang) 7.2 (7.3) 1 4.3 8 1.7 7 17.6 30 5.4 2,600

4-5-5-1 (bang-bang) 5.5 (3.2) 1 3.8 8 1.8 6 17.3 33 6.9 1,600

4-10-1 (continuous) 9.4 (8.1) 0 3.8 8 1.8 3 16.8 36 7.4 3,600

4-5-5-1 (continuous)14.3 (21.9) 0 4.4 7 1.7 4 19.5 38 6.8 3,800

Table 6.7:Summary of the results to obtain a first solution to the pole-balancing problem using

an initial average fraction of75% of terminals in the internal layers, obtained by interrupting the

evolutionary process when a first solution was found.

TOPOLOGY GEN (σ) NEURONS CONNECTIONS EFFORT

min avg max σ min avg max σ

4-10-1 (bang-bang) 3.7 (2.2) 0 1.0 5 1.1 4 8.1 26 4.4 1,100

4-5-5-1 (bang-bang) 4.0 (2.4) 0 1.3 4 1.1 4 9.0 22 4.9 1,300

4-10-1 (continuous) 7.0 (5.4) 0 1.0 3 0.9 3 7.7 16 3.9 2,600

4-5-5-1 (continuous) 8.2 (6.2) 0 1.4 6 1.3 4 9.8 34 6.0 2,700
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Table 6.8:Comparison of results obtained with the two-dimensional representation and cellular

encoding using a bang-bang control action. Individuals in the population were initialized with a

random proportion of terminals and neurons in the internal layers.

Results of the learning process Results of the generalization test

Method Number of fitness Number of successful runs

evaluations (σ) Best Mean Worst σ

Cellular encoding [194] 2,234 (N/A) N/A 430 N/A N/A

Two-dimensional (4-10-1) 612.4 (524.4) 372 329.5 195 34.4

Two-dimensional (4-5-5-1) 485.0 (226.3) 376 318.5 216 35.3

Table 6.9:Comparison of results obtained with the two-dimensional representation and cellular

encoding using a continuous control action. Individuals in the population were initialized with a

random proportion of terminals and neurons in the internal layers.

Results of the learning process Results of the generalization test

Method Number of fitness Number of successful runs

evaluations (σ) Best Mean Worst σ

Cellular encoding [194] 19,011 (N/A) N/A 386 N/A N/A

Cellular encoding [71] 1,400 (N/A) N/A 250 N/A N/A

Two-dimensional (4-10-1) 775.9 (581.1) 361 301.5 217 32.8

Two-dimensional (4-5-5-1) 1099.6 (1530.5) 372 303.6 197 39.8
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6.3.2 Second set of experiments

Whitley et al. [193] investigated the training of a neural controller for balancing the cart-

pole system using Genitor, a GA-based software package, and also using a reinforcement

learning technique called adaptive heuristic critic (AHC) [21].

In these experiments, a bang-bang control action based on a probabilistic interpretation of

the output of the network was used, in which an output of 0.75 does not necessarily mean

a push to the right, but rather that this action has a probability of occurrence of 75%.

The cart is initially in the center of the track with the pole vertically aligned, both with

null velocity. An individual is considered to be a solution to the problem if it can keep the

system within the predefined limits for 120,000 time steps. The experiments were carried

out with a failure signal at two different limits for the angle of the pole: 12 and 35 degrees.

The results are shown in Table 6.10 (the columns of the table have the same meaning as is

in Table 6.6).

To verify the generalization power of the solutions found in the second set of experiments,

each of them was required to balance the system starting from a set of 625 normalized

random states for 1,000 time steps. The results of these experiments are summarized in

Tables 6.11 and 6.12 (the columns of these tables have the same meaning as in Table 6.8)).

The results were substantially better than those reported in [193] in terms of number of fit-

ness evaluations to achieve a solution, for both methods: Genitor and AHC. The results are

remarkable if one considers that Whitley and collaborators did not evolve the architecture,

only the weights. The generalization power of the solutions attained was also better.

Moriarty and Miikkulainen [124] also investigated the evolution of neural controllers for

the pole-balancing problem, by using SANE (a GA-based method for building artificial

neural networks) to evolve the connectivity and the weights of a neural controller based

on a topology with a fixed hidden layer of 8 hidden neurons. The authors also trained a

network by two different reinforcement learning methods: AHC and Q-learning [189].
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Table 6.10:Summary of results obtained in the second set of experiments. In the first column,

the specified maximum angle of the pole is indicated in brackets. Values represent average over 50

random runs.

TOPOLOGY GEN (σ) NEURONS CONNECTIONS EFFORT

min avg max σ min avg max σ

4-10-1 (12o) 8.7 (6.0) 1 3.7 7 1.5 6 15.4 26 5.5 3,400

4-5-5-1 (12o) 9.6 (7.7) 1 4.3 8 1.8 6 19.2 37 6.9 3,000

4-10-1 (35o) 5.3 (3.5) 1 4.3 8 1.6 1 17.9 8 5.7 1,600

4-5-5-1 (35o) 6.1 (5.6) 0 3.9 8 1.9 4 17.3 35 7.1 2,400

Table 6.11:Results obtained with the two-dimensional representation and those reported by Whit-

ley et al. [193] for the12o case.

Results of the learning process Results of the generalization test

Method Number of fitness Number of successful runs

evaluations (σ) Best Mean Worst σ

Genitor 4,097 (2,205) 446 297 24 89

AHC 5,433 (2,390) 372 192 70 79

Two-dimensional (4-10-1) 720.5 (429.1) 498 380.6 101 87.3

Two-dimensional (4-5-5-1) 789.0 (554.1) 509 354.2 169 80.5

Table 6.12:Results obtained with the two-dimensional representation and those reported by Whit-

ley et al. [193] for the35o case.

Results of the learning process Results of the generalization test

Method Number of fitness Number of successful runs

evaluations (σ) Best Mean Worst σ

Genitor 4,206 (1,777) 430 304 92 92

AHC 3,922 (2,452) 406 271 19 108

Two-dimensional (4-10-1) 482.2 (246.8) 541 422.0 170 72.6

Two-dimensional (4-5-5-1) 538.5 (400.9) 535 426.3 219 87.3
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Table 6.13:Results obtained with the two-dimensional representation and those reported by Mori-

arty and Miikkulainen [124] for the12o case.

Results of the learning process Results of the generalization test

Method Number of fitness Number of successful runs

evaluations (σ) Best Mean Worst σ

SANE 535 (329) 81 48 1 25

AHC 8,976 (7,573) 76 44 5 20

Q-learning 1,975 (1,919) 61 41 13 11

Two-dimensional (4-10-1) 546.1 (308.0) 88 68.4 31 13.9

Two-dimensional (4-5-5-1) 488.5 (215.0) 90 65.9 36 14.9

As Moriarty and Miikkulainen used 60 degrees/s as normalization factor for the angular

speed of the pole, new experiments were carried out with this parameter setting. In addition,

the generalization test was performed with 100 random states. The results are summarized

in Table 6.13. The columns of Table 6.13 have basically the same meaning as in Table 6.11,

since for the AHC and the Q-learning algorithms, at each iteration of the learning process,

a balance attempt, i.e. a fitness evaluation, is carried out.

In terms of fitness evaluations, as well as generalization power, the results obtained with

the two-dimensional representation were considerably superior to those achieved by Mori-

arty and Miikkulainen with AHC and Q-learning. In terms of fitness evaluations only, the

performance of SANE was slightly superior to the two-dimensional representation using

the 4-10-1 grid, but inferior to that attained using the 4-5-5-1 grid. Also, the generalization

power of the solutions evolved by the two-dimensional representation with both grids, was

considerably superior to that obtained by Moriarity and Mikkulainen with SANE.
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6.3.3 Tracker problem

The experiments in Sections 6.2 and 6.3 involved feedforward architectures. To assess

the ability of the two-dimensional representation in evolving recurrent networks, it was

applied to the moderately complex problem of evolving a control system for an agent whose

objective is to track and clear a trail. The particular trail used, the John Muir trail [87, 6],

consists of 89 tiles in a 32x32 grid (see Figure 6.14). The grid is considered to be toroidal.

The tracker starts in the upper left corner, and faces the first position of the trail. The only

information available to the tracker is whether the position ahead belongs to the trail or not.

Based on this information, at each time step, the tracker can take 4 possible actions:wait

(doing nothing),move forward(one position),turn right 90o (without moving) orturn left

90o (without moving). When the tracker moves to a position of the trail, that position is

immediately cleared. This is a variant of the well known ”ant” problem often studied in the

GP literature [94, 95, 97].

Usually, the information to the tracker is given as a pair of input data [87, 6]: the pair is

(1,0) if the position ahead of the current tracker position belongs to the trail, and (0,1) if

it does not. The objective is to build a network that, at each time step, receives this infor-

mation, returns the action to be carried out, and clears the maximum number of positions

in a specified number of time steps (200 in the experiments carried out in this work). As

information about where the tracker is on the trail is not available, it is clear that to solve

the problem the network must have some sort of memory in order to remember its position.

As a consequence, a recurrent network is necessary. Although it might seem to be unnec-

essary, thewait action allows the network to update its internal state while staying at the

same position (this can be imagined as ”thinking” about what to do next).

This problem is very hard to solve in 200 time steps (in [95], John Koza allotted 400 time

steps to follow slightly different trails using GP). However, it is relatively easy to find so-

lutions able to clear up to 90% of the trail (in [87] Jeffersonet al. present a statistical

evaluation of the difficulty of the problem using finite automata and artificial neural net-

works). This suggests that the search space has many local minima to mislead evolution,
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Figure 6.14:John Muir trail. Positions of the trail are numbered.

as confirmed by Langdon and Poli [100], who studied the fitness landscape of the ant prob-

lem for GP. This makes the problem a good benchmark to test the ability of the proposed

method to evolve recurrent networks.

Asymmetric recurrent networks were used to solve the problem, where a neuron can receive

connections from any other neuron (including output neurons). All neurons are evaluated

synchronously as a function of the output of the neurons in the previous time step, and the

current input to the network. Initially, all neurons have null output.

In all experiments, a population of 200 individuals was evolved. Terminals and neurons

were randomly allocated in a 2-10-4 grid. The weights and biases were randomly ini-

tialized within the range [-1.0, +1.0]. The fitness of an individual was measured by the

number of trail positions cleared in 200 time steps. The population was evolved for a

maximum of 500 generations, and a threshold function was used as activation function,

f(x) =

{
+1 if x ≥ 0

−1 otherwise
. Table 6.14 shows the mapping of the network output into ac-

tions.
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In 20 independent runs, the average number of positions cleared by the best individuals

evolved was 84.3, with a standard deviation of 3.0. By assigning additional time steps to

the best individuals evolved, in 50% of the runs, the best individuals cleared the 89 positions

in less than 240 time steps. Two solutions were found which were able to clear the entire

trail in 199 time steps: one with 6 hidden neurons and 70 connections, and another with

4 hidden neurons and 54 connections (see Figures 6.15 and Figures 6.16), leading to a

computational effort of 4,373,600. An unexpected feature of the solutions found is that,

although available, they do not make use of either theturn left or thewait options to move

along the trail. Although both solutions clear the trail in the same number of steps and use

the same options to traverse the trail, they implement different strategies to do that. This

can be verified by comparing the sequence of moves of both trackers shown in Figures 6.17,

6.18, 6.19 and 6.20, as well as the evolution of the number of track positions cleared as a

function of the number of time steps shown in Figures 6.21 and 6.22.

It is worth mentioning that additional solutions were obtained by allowing these successful

runs to continue to the maximum number of generations specified. Actually, 7 different

additional solutions were generated. However, these multiple solutions were not included

in the statistics presented in the previous paragraph.

Table 6.14:Mapping of the network output into the 4 possible actions. For convenience, only two

of the output neurons were used to define the actions. However, the other two neurons in the third

layer are effectively used to compute the internal state of the network.

NETWORK OUTPUT ACTION

OUT3 ¡ 0 and OUT4 ¡ 0 MOVE FORWARD

OUT3 ¿ 0 and OUT4 ¡ 0 TURN LEFT

OUT3 ¡ 0 and OUT4 ¿ 0 TURN RIGHT

OUT3 ¿ 0 and OUT4 ¿ 0 WAIT
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Figure 6.15:Full solution to the tracker problem with 6 hidden neurons. Values in the circles are

biases.
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Figure 6.16:Full solution to the tracker problem with 4 hidden neurons. Values in the circles are

biases.

103



Figure 6.17:Actions taken by the tracker as a function of the number of steps for the solution with

6 hidden neurons.

Figure 6.18:Actions taken by the tracker as a function of the number of steps for the solution with

4 hidden neurons.
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Figure 6.19:Tracker with 6 hidden neurons. Position along the trail at each time step. Steps

missing are spent executing theturn right action.
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Figure 6.20:Tracker with 4 hidden neurons. Position along the trail at each time step. Steps

missing are spent executing theturn right action.
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Figure 6.21:Number of track positions cleared as a function of the number of steps for the solution

with 6 hidden neurons.

Figure 6.22:Number of track positions cleared as a function of the number of steps for the solution

with 4 hidden neurons.
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These are very promising results. For comparison, Jeffersonet al. [87] report a solu-

tion with 5 hidden neurons, which clears the trail in 200 time steps. The solution is a

hand-crafted architecture trained by genetic algorithms using a huge population (65,536

individuals). Using an evolutionary programming approach, Angelineet al. [6] report a

network with 9 hidden neurons, evolved in 2,090 generations (population of 100 individ-

uals). The network clears 81 positions in 200 time steps and takes additional 119 time

steps to clear the entire trail. The authors also report another network evolved in 1,595

generations, which scores 82 positions in 200 time steps.

6.4 Summary

The two-dimensional representation was applied to the evolution of feedforward and re-

current architectures in a test suite of benchmark problems. It was demonstrated that, in

the tasks analyzed, it compares very favorably to the direct or indirect approaches used for

comparison. In the next chapter, a variation of the method is discussed, which uses the new

crossover operator to evolve the architecture, while genetic programming is used to evolve

the weights.
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Chapter 7

Evolution of artificial neural networks

using weight mapping

7.1 Introduction

The training of artificial neural networks for a particular task can be seen as a mapping of

the initial set of random weights into a new set of adapted weights which solves the prob-

lem. That means, the process of training defines a function to map the initial set of random

weights into the correct ones. For example, the backpropagation training algorithm is an at-

tempt to construct such amapping functioniteratively. Unfortunately, learning procedures

always use the same strategy to adapt the weights, although the error surfaces associated

with different tasks present completely different features. As a consequence, all sorts of

difficulties arise in this process (see discussion in Section 2.2). Genetic programming has

been used to evolve new learning rules [24, 126, 154], which overcome some of these dif-

ficulties. These approaches seek to evolve new general purpose training procedures, which

are more robust and more efficient than existing ones. However, it would be more interest-

ing to address each task by using a different learning method to adapt the weights.

In this chapter, a new approach is discussed, which combines genetic programming with a

109



variation of the two-dimensional representation introduced in Chapter 5. The new method

uses GP to automatically build a non-iterative mapping function to adapt the weights. The

function is evolved concurrently to the architecture, and is tailored to the task at hand.

7.2 Representation

The general structure of the new approach can be described as follows: each individual has

its own mapping function to be used to compute the adapted weights fromraw weights

(biases are treated as ordinary weights). The process is illustrated in Figure 7.1. The indi-

vidual in Figure 7.1a has a set of raw weights which are not suitable to solve a particular

problem. New values are then computed by applying the mapping function in Figure 7.1b

to the raw weights, resulting in the individual in Figure 7.1c. The mapping function is

actually implemented as the parse tree shown in Figure 7.1d. The structure of the network

in Figure 7.1a is encoded and evolved similarly to the two-dimensional representation pre-

sented in Chapter 5, whereas the parse tree is evolved by genetic programming.

All individuals in the population are structures which have one part to describe the archi-

tecture of the encoded network, and a second part to represent the function to map the raw

random weights into the values used to evaluate the network performance. The representa-

tion is illustrated in Figure 7.2. The first part is encoded similarly to the two-dimensional

representation described in Chapter 5, as an ordered list of nodes. Nodes may be of two

types: terminal or neuron. In the first case, the node is a variable containing an input to

the network. In the second case, the node represents a processing element of the encoded

network. When the node is a neuron, it is represented as a list containing information about

its connections. Connections are represented by indexes, indicating the positions of the

connected nodes. A grid is also used to interpret the architecture part of the genotype as a

two-dimensional structure. The second part of the genotype encodes the mapping function

as a parse tree.
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Figure 7.1:Conversion of raw weights into adapted ones. (a) Two-dimensional representation with

raw weights (values in the circles are also weights representing biases). (b) Mapping function. The

variableW represents a weight (c) Two-dimensional representation with adapted weights. (d) Parse

tree encoding the mapping function.
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Figure 7.2:Genotype divided into two parts. (a) First part represents the architecture. (b) Second

part is a parse tree to encode the mapping function.R1andR2are random constants.

Note that neither weights nor biases are included in the genotype anymore. To assign

these values to the architecture, a single ordered list of raw weights is created at the be-

ginning of the evolutionary process, as if all nodes (including those occasionally occupied

by terminals) were interconnected with the maximum allowed connectivity (feedforward

or recurrent). The list also includes raw weights representing biases for all nodes (even

for those nodes occasionally occupied by terminals). The set of raw weights is fixed and

unique, and this is a characteristic of the population. It is used to assign the same raw

weights and biases to the connections and neurons of all individuals of the population dur-

ing fitness evaluation. For each neuron of an individual, this is performed by reading the

indexes of the connected nodes, and picking up the corresponding connection weights and

biases from the list of raw weights. Afterwards, the mapping function is applied to these

raw values, to compute adapted ones.
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As in genetic programming, to build the parse tree in the second part of the genotype, a

set ofterminals(not to be confused with the set of terminals used to define the architecture

in the first part of the genotype) and a set offunctionsis defined. The set of terminals

includes a variable representing the weight which the function is applied to, and also a

variable which is used to initialize random constants when the individuals of the initial

population are created (when a parse tree is initially created, the terminals which contain

this variable are randomly initialized with real-valued constants). The set of functions may

include simple arithmetic operations or any other suitable mathematical function.

In the two-dimensional representation described in Chapter 5, multiple connections be-

tween the same two nodes were allowed in order to fine tune the weights. In the current

representation, the full adaptation of the weights is carried out by the mapping function.

Consequently, multiple connections are not allowed.

It is interesting to note that for a fixed architecture, if the values of the correct adapted

weights were known in advance, finding the mapping function (as an academic exercise

only, since the target weights would be already known) would be a problem of fitting a

curve to a set of points (see Figure 7.3a). However, as these values are not known, the

mapping function has to be evolved based on the fitness of the individual, and then used

to compute the adapted weights (see Figure 7.3b). This approach is similar to training by

genetic algorithms (see Section 4.2). Training by GAs collects information about fitness

from different points in the weight space, through the different sets of weights assigned to

the individuals of the population. With the present approach, the raw weights are the same

for all individuals, but the mapping function is different for each individual.

It must be pointed out that the combination of the network topology with a function for

adapting the weights has also been explored by Lucas [106, 105, 107], by merging the

learning rule and the network into a single oriented graph with typed nodes. Some of the

nodes correspond to the neurons of the network, whereas others are used to compute the

connection weights. When the nodes of the graph are evaluated repeatedly, the net effect

is equivalent to a learning rule applied to the embedded network (Lucas presents a graph
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Figure 7.3:(a) Fitting a curve to a known set of target weights. (b) Trying to figure out the correct

curve based on fitness, in order to compute the target weights.
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which simulates the execution of the backpropagation algorithm). With this method, the

network and the learning rule are also simultaneously evolved for each task. However, it

is difficult, if not impossible, to control the complexity of the network and the learning al-

gorithm, as they are interwined in a single structure. With the mapping function approach,

the architecture and the learning rule are separated in the genotype, and a crossover oper-

ator can be defined to evolve both parts simultaneously, but independently. Moreover, the

complexity of the mapping function may depend on the diversity of the adapted weights

but, in principle, it is independent of the size of the network.

7.3 Crossover operator

To evolve both parts of the genotype simultaneously, a combined crossover operator is

defined. Firstly, recombination of the architectures of both parents is carried out similarly

to that performed by the two-dimensional crossover operator introduced in Section 5.3.

Secondly, the parse trees defining the mapping functions of both parents are recombined.

The architectures are recombined by selecting a nodea in the first parent and a nodeb

in the second parent, and replacing nodea with nodeb in a copy of the first parent (the

offspring). Depending on the types of nodea and nodeb, the replacement is carried out as

follows:

Both nodes are terminals: Nodeb replaces nodea.

Nodeb is a terminal and nodea is a neuron: Nodeb replaces nodea.

Nodeb is a neuron and nodea is a terminal: Performed as in the crossover operator de-

scribed in Section 5.3. A modified nodeb is created to replace nodea in the offspring,

by manipulating the indexes of the connections of nodeb (note that the description

of the nodes do not include either weights or biases anymore).
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Figure 7.4:Combination of two neurons. (a) Nodea. (b) Modified nodeb . (c) New node created

by crossover with multiple connections. (d) Multiple connections deleted from the new node, to

replace nodea in the offspring.

Both nodes are neurons: After modifying nodeb as in the previous case, nodeb and

nodea are combined by selecting two random crossover points, one in each node,

and replacing the connections to the right of the crossover point in nodea with those

to the right of the crossover point in nodeb, thus creating a new node to replace node

a in the offspring. This process can easily create multiple connections between the

same two nodes. These connections are deleted before the replacement of nodea in

the offspring, since they are meaningless in the current representation, as the tuning

of the weights is performed by the mapping function (see Figure 7.4).

In a second step, a standard genetic programming crossover of the parse trees representing

the mapping functions is performed by replacing a random subtree in the offspring with a

random subtree selected from the second parent (see Figure 7.5).

In the crossover operator introduced with the two-dimensional representation, the limitation

of the number of multiple connections was introduced to increase the efficiency of the

search. Similarly, to prevent the excessive growth of the parse trees, a maximum depth is

specified, and the selection of the subtrees for swapping is carried out according to this

constraint.

A bias is also introduced to favor functions in the selection of the roots of the subtrees for
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Figure 7.5:Crossover of parse trees. (a) Subtree selected in the first parent. (b) Subtree selected in

the second parent. (c) Offspring.
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crossover [95]. This is introduced due to the increase in the proportion of terminals in the

parse trees in the course of evolution. Otherwise most of the time would be spent replacing

terminals without much practical effect. In addition, two terminals representing variables

are never selected as subtrees for crossover, since they encode the same weight.

7.4 A bit of complexity

One might argue that, since the adapted values for the weights have to be computed on the

fly each time an individual is evaluated, the mapping function is actually equivalent to a

conventional training procedure applied at each generation. Although this is true, the two

approaches have considerably different complexities. In the case of conventional learning

algorithms, the complexity is not in the final function that transforms the raw weights into

adapted ones, but in the many training steps required to generate this function. In the case

of the mapping function approach, the complexity is built in the evolutionary process, not

in the function itself.

Another interesting point is that, for the mapping of weights, the size of the search space

is constrained. For example, for grids withN internal nodes andI input neurons, the

number of different genotypes for architectures with a single output neuron is given by

FP (N, I) × TREES(S). FP(N,I) is the number of different configurations of neurons

and connections that can be encoded in the first part of the genotype, andTREES(S)is the

number of different parse trees with a maximum ofS nodes that can be encoded in the

second part of the genotype.

It is straightforward to prove thatFP(N,I) is given by:

FP (N, I) =
N∑

n=0

M(N,n)∑
i=1

S(Config(i))∏
j=1

Max(i,j)∑
k=0

Perm(Max(i, j), k)


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where

M(N,n)= number of combinations ofN internal neurons takenn at each time
Config(i)= ith neuron configuration (including the single output neuron) yielded by

the M(N,n) combination
S(Config(i))= number of neurons in theith configuration
Max(i,j) = maximum number of connections of thejth neuron in theith
configuration
Perm(Max(i,j),k)= number of permutations ofMax(i,j) connections takenk at each

time (the order of the connections of a neuron is irrelevant)

Of course, many of theFP(N,I) configurations of neurons and connections may lead to

functionally equivalent networks (this is connected to thepermutationor competing con-

ventionproblem [152, 72]), or even to the same network architecture. But, as the evolu-

tionary process takes place in the genotype space, the size of the search space is given by

FP (N, I)× TREES(S).

The number of parse trees with a maximum ofSnodes depends on thedegreeof the nodes

(the number of subtrees of a node), and the degree depends on the arity of the functions

occupying the nodes. For example, for parse trees where each node can be either of degree

0 or 2 only, the number of different parse tree configurations with2s+1 nodes (s= 0,1,2...)

is given by (adapted from [92]):

B(2s + 1) =
1

s + 1

(
2s

s

)

Such parse trees haves internal nodes and(s + 1) leaves. As internal nodes are occupied

by functions, for a function set withF functions of arity 2 (e.g. the fundamental arithmetic

operations), a single parse tree configuration withs internal nodes corresponds toF s dif-

ferent parse trees. Similarly, as leaves are occupied by terminals,T different terminals lead

to T (s+1) different parse trees. Consequently,B(2s+1)F sT (s+1) different parse trees result

from 2s+1 nodes. This implies that
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TREES(S) =
S∑

s=0

(
B(2s + 1)F sT (s+1)

)

Similarly to the networks, not all parse trees actually encode different mathematical ex-

pressions, but the size of the search space for parse trees is still given byTREES(S). For

example, if only the four fundamental arithmetic operations and only two different termi-

nals are used, a maximum of 511 nodes (corresponding to a maximum depth of 8) result

in O(10766) different parse trees1. By computingFP(N,I) for the number of internal nodes

used in the binary classification problems discussed in Section 6.2, the size of the search

space for these tasks can be estimated (see Table 7.1).

Although large, the size of the search space yielded by the weight mapping approach is still

much smaller than that yielded by the two-dimensional representation proposed in Chap-

ter 5. If multiple connections are not allowed, the number of neurons and connections

configurations for the two-dimensional representation is also given byFP(N,I). For multi-

ple connections, this number is considerably greater, as multiple connections can receive

different weights, making them distinguishable from each other. Moreover, each of the

multiple connections of a neuron can be replaced with another connection with a differ-

ent weight available in the population. This means that the number of genotypes that can

be achieved with the two-dimensional representation is huge, and dependent on the size

of the population. If mutation is used to keep introducing new values for the weights at

each generation, the search space of genotypes for the two-dimensional representation is in

principle infinite.

However, in practical applications with thousands of individuals evolved for thousands of

generations, only a very tiny fraction of the search space yielded by any method can be

actually searched. Firstly, because even in the initial population individuals have many

common features. Secondly, because the evolutionary process leads the population to con-

verge to a small region of the search space during evolution. Consequently, it is unlikely

1In the computation of the number of binary trees with a specified number of nodes, no constraint was

applied to the maximum depth of the tree. If such a restriction is imposed, the number of possible parse trees

is reduced, but the general idea still holds
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Table 7.1:Size of the search space for the weight mapping approach.

Task FP(N,I) FP (N, I)× TREES(S)

XOR O(1049) O(10815)

3 parity O(1059) O(10825)

4 parity O(1069) O(10835)

5 parity O(1080) O(10846)

T-C O(10416) O(101182)

that the constraint imposed by the mapping of weights on the size of the search space brings

any intrinsic advantage or disadvantage.

7.5 Experimental results

To evaluate the performance of the mapping function approach, some of the experiments

carried out for the two-dimensional representation were repeated.

The same conditions of the experiments performed in Chapter 5 were applied to the exper-

iments with the mapping function approach, and the following additional conditions were

applied to the parse trees:

• Parse trees initialized by the ramped half-and-half procedure [95].

• Maximum depth: 8.

• Fraction of random constants included as terminals: 25%. This means that, on the av-

erage, when a parse tree was created, the variable representing a weight was assigned

to 75% of its terminals, and the remaining 25% of the terminals were randomly ini-

tialized with real-valued constants.

• The roots of the subtrees for crossover were selected using a probability distribution
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which allocated 80% of the crossover points to the internal nodes of the parse trees

and 20% to the terminals.

• Function set to select the internal nodes of the parse trees: [ * , - , + ,PDIV ], where

PDIV stands for protected division (returns the numerator if the denominator is zero).

• The raw weights were randomly initialized without repetition. This is necessary

because two connections may require different adapted weights, and to guarantee

that the mapping function exists, their raw weights must also be different.

7.5.1 Binary classification problem

To show the performance of the method proposed, it was first applied to the test suite of

binary classification problems: the odd-2 (XOR), 3, 4 and 5 parity, the symmetry and the

T-C problems. A Summary of the results obtained in 50 independent runs is shown in

Table 7.2.

By comparing these results to those in Table 6.1 it can be realized that, in terms of compu-

tational effort to find a solution, the new method fared better on 2 of the tasks and worse on

the other 4.

A typical solution to the odd-3 parity problem illustrates the process of building the net-

work. Firstly, the weights are read from the list of raw values and assigned to the archi-

tecture evolved. This results in the two-dimensional representation in Figure 7.6a. Subse-

quently, the raw weights are adapted by the mapping function evolved simultaneously to the

architecture, leading to the two-dimensional structure in Figure 7.6b. The two-dimensional

representation can then be decoded into the corresponding network shown in Figure 7.7a,

which can still be simplified to the network Figure 7.7b if desired. The mapping of the raw

weights to adapted ones is performed by the function encoded in the parse tree in Figure

7.8a, whose mathematical expression is given in Figure 7.8b. The process of building the

mapping function can be visualized by considering the evolution of this function for the

best individual in the population as shown in Figure 7.9.
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Figure 7.6:Two-dimensional representation of a typical solution to the odd-3 parity problem. (a)

With raw weights. (b) With values adapted by the function in Figure 7.8b.
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Figure 7.7:(a) Decoded network of the solution to the odd-3 parity problem, obtained by replacing

connections from terminals in the internal layer (and removing the terminals) with connections

from corresponding terminals in the input layer, and merging the resulting multiple connections by

adding up their weights. (b) Further simplification of the network by removing neurons which do

not contribute to the output of the network.
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Figure 7.8:(a) Parse tree representation of the evolved mapping function for the solution to the

odd-3 parity problem. (b) Corresponding mathematical expression.
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Figure 7.9:Evolution of the mapping function of the best individual in the population for the odd-3

parity problem. For plotting purposes only, the values of the adapted weights were squashed into

the interval [-1.0, +1.0] by the hyperbolic tangent.
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Table 7.2:Summary of the results to obtain a first solution to the binary classification problems

using a single internal layer containing no terminals initially.

TASK GEN (σ) NEURONS CONNECTIONS EFFORT

min avg max σ min avg max σ

XOR 4.1 (8.5) 2 8.9 10 1.7 7 32.6 42 7.6 3,000

3 parity 56.0 (74.5) 1 7.8 10 1.8 7 34.6 57 8.6 33,600

4 parity 277.0 (191.7) 3 6.9 10 1.8 21 38.8 57 9.8 224,000

5 parity 406.9 (166.7) 2 4.8 9 2.1 16 31.2 57 11.6 481,600

Symmetry 348.1 (193.8) 5 7.5 10 1.4 24 37.5 48 7.3 248,000

T-C 48.0 (75.0) 2 11.3 15 2.9 28 100.5 159 30.3 30,600

7.5.2 Pole-balancing problem

The experiments with the pole-balancing problem were carried out using the same approach

described in Section 6.3.1 for the bang-bang and the continuous control action. Table 7.3

shows the results of 50 independent runs, and also results transcribed from Table 6.6 for

comparison.

For the pole-balancing problem, the weight mapping approach was superior, in the bang-

bang as well as in the continuous control action, in terms of the computational effort to

find a solution. With regard to the average number of generations to find a solution, the

mapping of weights fared better in the bang-bang case, whereas the two-dimensional rep-

resentation did better in the continuous case. This is confirmed by the average number of

fitness evaluations to find a solution shown in Tables 7.4 and 7.5.

Tables 7.4 and 7.5 show the results of the generalization test carried out with the weight

mapping approach, as well as corresponding results for the two-dimensional representation

and cellular encoding taken from Tables 6.8 and 6.9. In comparison to cellular encoding,

the method was substantially superior in terms of number of fitness evaluations to find a

solution in the bang-bang case. For the continuous control action, the mapping of weights
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approach yielded results superior to those reported in [194], and inferior to those reported

in [71]. The generalization power of the solutions presented was better compared to the

result in [71], and worse in comparison to the results in [194].

Table 7.3:Comparison of results to obtain a first solution to the pole-balancing problem using the

weight mapping approach and the two-dimensional representation (values transcribed from Table

6.6). In the first column,b andc indicate bang-bang and continuous control action, respectively.

METHOD GEN (σ) NEURONS CONNECTIONS EFFORT

(control action) min avg max σ min avg max σ

Weight mapping (b) 3.6 (5.7) 2 4.1 8 1.3 9 19.6 32 5.7 1,400

Weight mapping (c) 22.2 (34.5) 0 4.2 8 2.0 3 19.4 36 8.2 1,700

Two-dimensional (b) 7.2 (7.3) 1 4.3 8 1.7 7 17.6 30 5.4 2,600

Two-dimensional (c) 9.4 (8.1) 0 3.8 8 1.8 3 16.8 36 7.4 3,600

Table 7.4:Comparison of results obtained with the weight mapping approach, cellular encoding

and the two-dimensional representation (results copied from Table 6.8), using a bang-bang control

action.

Results of the learning process Results of the generalization test

Method Number of fitness Number of successful runs

evaluations (σ) Best Mean Worst σ

Cellular encoding [194] 2,234 (N/A) N/A 430 N/A N/A

Weight mapping 349.2 (395.5) 372 319.8 185 41.2

Two-dimensional 612.4 (524.4) 372 329.5 195 34.4
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Table 7.5:Comparison of results obtained with the weight mapping approach, cellular encoding

and the two-dimensional representation (results copied from Table 6.9), using a continuous control

action.

Results of the learning process Results of the generalization test

Method Number of fitness Number of successful runs

evaluations (σ) Best Mean Worst σ

Cellular encoding [194] 19,011 (N/A) N/A 386 N/A N/A

Cellular encoding [71] 1,400 (N/A) N/A 250 N/A N/A

Weight mapping 1656.8 (2414.9) 376 313.4 209 41.4

Two-dimensional 775.9 (581.1) 361 301.5 217 32.8

7.5.3 Tracker problem

The recurrent version of the method was tested using the tracker problem discussed in

Section 6.3.3. In 20 independent runs, the average number of positions cleared by the best

individuals evolved was 80.4, with a standard deviation of 6.6. By assigning additional

time steps to the best individuals evolved, in 50% of the runs, the best individuals cleared

the 89 positions in less than 290 time steps. A solution with 6 hidden neurons and 48

connections was found (see Figure 7.10), which was able to clear the entire trail in 199

time steps, amounting to a computational effort of 8,766,000. Similarly to the experiments

in Section 6.3.3, the solution found did not make use of either theturn left or the wait

options to traverse the trail. Five additional solutions were also obtained in this successful

run by allowing the evolutionary process continue to the maximum number of generations

specified, but these multiple solutions were not included in the statistics just described.

It is remarkable, that the solution in Figure 7.10, using the same actions as the previous two

solutions presented in Section 6.3.3, still yields a different strategy to clear the trail in 199

steps. This can be realized by comparing Figures 7.11, 7.12 and 7.13 to the corresponding

ones in Section 6.3.3.
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Figure 7.10:Full solution to the tracker problem. Values in the circles are biases. Interpretation of

the output of the network is performed as in Section 6.3.3.
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Figure 7.11:Actions taken by the tracker in Figure 7.10 as a function of the number of steps.

Figure 7.12:Number of track positions cleared as a function of the number of steps by the network

in Figure 7.10.
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Figure 7.13:Position along the trail at each time step. Steps missing are spent executing theturn

right action.
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7.6 Summary

The performance of the weight mapping approach was demonstrated to be superior to the

two-dimensional representation in some of the experiments and worse in others. These

results indicate that, for some applications, the mapping of weights is a viable alternative to

the representation proposed in Chapter 5. Moreover, the mechanism proposed for encoding

the weights is independent of the size of the network, a feature that can be explored in

combination with other methods.
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Chapter 8

Further research and summary

8.1 Introduction

The new method for the synthesis of artificial neural networks discussed in this work was

implemented using standard genetic algorithm parameters. This was done on purpose to

demonstrate that the method works without having to fine tune parameters. However,

this does not imply that more elaborate approaches could not be beneficial. It was also

mentioned that the extension to the two-dimensional representation presented in Chapter 7

could be combined with other methods. To address these issues, plans for future research

are discussed in the next sections.

8.2 Variations on the basic crossover operator

Other variants of the proposed crossover operator could be investigated. For example, con-

nections not allowed due to connectivity constraints might be kept in the genotype instead

of being deleted. They could be ignored in the evaluation of the fitness of the individual,

but would still be present for crossover, and might be reused later. On the one hand, this

has the advantage that the elimination of genetic material is reduced (elimination to comply
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with the maximum number of multiple connections would still remain). On the other hand,

to keep a great number of introns (parts of the genotype which are not expressed in the

phenotype) might reduce the efficiency of crossover in promoting evolution.

Another possibility is to allow a connection to acquire a new weight when crossover re-

places a neuron with another neuron in the offspring. This can be implemented by choosing

the crossover points in the neurons between the index of the connected node and the weight.

In this case, it would make sense to implement the biases as weights of connections from

an additional node of constant output, to be evolved as an ordinary connection weight. By

assigning new weights to the connections, the flexibility of the crossover operator would

be increased.

A third alternative worth investigating, is to perform two-point crossover between two neu-

rons, instead of the one-point crossover used in this work. To do that, the neurons should be

defined as circular lists, containing the bias and the connections. In this case, it would also

make sense to implement the biases as ordinary weights, allowing them to be eliminated

and reintroduced by crossover. The bias deleted from the list of connections of a neuron

would receive a null default value, whereas multiple biases would be added up.

In genetic programming, a bias is usually introduced in the selection of roots of subtrees for

crossover, to counteract the increase in the proportion of terminals in the parse trees. With

the grid representation this is not so serious a problem because the genotype has a fixed

size. However, as mentioned in Section 5.3, to reduce the complexity of the networks,

the crossover operator proposed, slightly favors the replacement of neurons with terminals.

Consequently, it may happen that late in the evolution, terminals start to dominate the

genotype as internal nodes. In this case, most of the time may be spent replacing terminals

with terminals without much practical effect. To bypass this problem, crossover could be

designed to favor the selection of neurons instead of terminals later in the evolution.
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8.3 Splitting the crossover operator

The crossover operator defined for the weight mapping approach could be used to define

two specialized operators: anarchitecture-evolvingoperator to evolve the topology, and

a weight-evolvingoperator to evolve the weights and biases. The former would be im-

plemented by the part of the crossover operator introduced in Section 6.3 to evolve the

architecture, whereas the latter would be the standard genetic programming crossover op-

erator which evolves the mapping function. Both operators could be independently applied

with different probabilities.

For instance, learning could be stressed at the expense of evolving the architecture, by using

a small architecture-evolving to weight-evolving probability ratio. The weight-evolving

operator could also be used for training fixed architectures, by initializing all individuals in

the population with the same topology (actually, the architecture part of the genotype would

be eliminated since it would not be evolved anymore). In this case, the adapted weights

and biases would be evolved, in a kind of training by genetic programming, whereby GP

would directly adapt the weights for each task.

As discussed in Section 2.2, conventional learning procedures have many limitations. Ge-

netic programming has been used to evolve new learning rules which eliminate some of

them. However, the new evolved rules are general purpose algorithms, and as such, can not

exploit any peculiarity of the error surface defined in the weight space of a particular prob-

lem. Moreover, they still work based on local information which may mislead the training

process. In contrast, the weight mapping approach builds a function which is tailored to the

error surface of the task being addressed. Moreover, it is not based on local information,

since genetic programming directly evolves the weights.

Genetic algorithms have also been used for training. However, training by GAs becomes in-

tractable, but for small architectures, as GA-based methods directly encode all the weights

into the genotype. Of course, the difficulty of training by any method increases with the

size of the network, as more free parameters have to be adjusted. However, the size of the

136



genotype has a direct effect on the efficiency of the search, and the size of the representation

in the weight mapping approach is independent of the size of the network. Actually, this

is a feature which the new approach shares with conventional learning algorithms, which

are also independent of the size of the network. As a consequence, the weight mapping

approach might be competitive, even in those applications where conventional learning

algorithms are expected to be more efficient than GA-based methods. Moreover, other

variations of the method can be investigated, which may further improve its performance,

for example:

• More sophisticated genetic programming techniques, such as automatic defined func-

tions can be explored [95]. Also, in addition to the fundamental arithmetic opera-

tions, other functions (exponential, square root, logarithm, trigonometric, etc.) can

be included in the function set. This would allow mathematical expressions to adjust

the weights to be evolved more efficiently. Operators for conditional branching, itera-

tive loops, etc. can also be included in the function set, to evolve complex algorithms

to compute the adapted weights.

• A wrapping function can be used to constrain the output of the parse tree to a speci-

fied range. This would bias the search to avoid large values of the weights, preventing

the saturation of the activation function.

• The weights of other connections can be included as input to the parse tree. This

can be carried out by including more variables in the terminal set. For example,

the additional variables can represent the weights of the incoming connections of a

neuron (if a particular neuron does not have enough connections to assign values to

all terminals, null values can be assigned to those which do not have a corresponding

connetion). That means, the value of the adapted weight computed by the parse

tree would be sensitive to the context (conventional learning methods use a similar

strategy, as the update of a particular weight depends on the value of other weights).
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• The random constants initialized when a parse tree is created can be made neuron

dependent. For example, each random constant can be replaced with a vector of

random constants, whose length is the number of neurons in the network. When the

mapping function of an individual is applied to the raw weight of a connection of a

particular neuron, the value of each constant is read from the entry corresponding to

the neuron. That means, although the form of the mapping function would be the

same for all connection weights, there would be neuron dependent parameters. This

would enrich the method.

It must be pointed out that the initial set of raw weights is not a starting point as in con-

ventional training procedures. Genetic algorithms use bitstrings or real-valued vectors to

encode the weights, i.e. each individual of the population represents a different point in

the weight space, With training by weight mapping, each individual of the population is

a function, which must be applied to the raw set of weights, to yield adapted ones. That

means, the different points in the weight space are actually represented by the output of

the different mapping functions. The set of raw weights is only an ingenious way of en-

coding the adapted weights as output of functions. Consequently, the effectiveness of the

weight mapping approach should be fairly independent of the initialization of the set of raw

weights.

These features make clear the potential of the weight mapping approach as a new form of

training of artificial neural networks by genetic programming.
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8.4 Weight mapping combined with indirect encoding meth-

ods

8.4.1 Weight mapping with fixed size representation

Any method to evolve artificial neural networks which combines fixed size representation

with training at each generation, could benefit from the weight mapping approach, by re-

placing the training process, with adaptation of the weights through the mapping function.

In Chapter 4 it was pointed out that grammar-based methods could benefit from a mecha-

nism for encoding the weights which did not depend on the size of the network (Lesson 4).

This is exactly the appeal of the weight mapping approach.

For example, Kitano’s method, described in Section 4.3.4, is a perfect candidate for this

symbiosis, as for a maximum number of rewriting cycles, the connectivity matrices gen-

erated are all of the same size. Consequently, it is straightforward to define a set of raw

weights to be assigned to the networks. The genotype would consist of the grammar rules

for generating the connectivity matrix, plus the mapping function encoded in the parse tree.

8.4.2 Weight mapping with variable size representation

The definition of a set of raw weights is not limited to fixed size representations. Methods

which use a variable size representation can also benefit from the mapping function ap-

proach. For example, in cellular encoding (see Section 4.5), different genotypes may lead

to decoded networks with a different number of neurons. However, it is possible to define a

set of raw weights by considering the number of neurons of the biggest decoded network in

the initial population, with the maximum number of connections allowed by connectivity

constraints. If in later generations additional weights are necessary (because the networks

get bigger), new values are included in the original set. The genotype would consist of

the standard grammar-tree of cellular encoding, and the parse tree encoding the mapping
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function. In cellular encoding, the procedure of resetting the reading head to the root of the

grammar-tree imposes a regularity in the distribution of the weights in the network. With

the weight mapping approach this would not happen. Regularity, if any, would be encoded

in the mapping function by the evolutionary process.

8.5 Summary

In this work, a new method for the synthesis of artificial neural networks based on a two-

dimensional representation has been proposed. The method is able to evolve the architec-

ture and the weights concurrently, without further local optimization of the weights by a

learning procedure at each generation.

In order to make the thesis self-contained, an introduction about artificial neural networks

was given, to discuss the main aspects involved in the building of ANNs. For the same

reason, an introduction about genetic algorithms was presented.

To address the issue of integrating artificial neural networks and genetic algorithms, a liter-

ature review was presented, where previous applications of GAs to the building of ANNs

were discussed. Two objectives were achieved with this literature review. Firstly, the de-

ficiencies of existing methods were identified. Secondly, based on these shortcomings,

criteria for designing a good method for evolving ANNs were defined.

On the grounds of these criteria, a new general purpose two-dimensional representation

for the evolution of artificial neural networks was then proposed. The new approach was

designed to comply with all the conditions specified for a good method. In addition, a new

pruning strategy was introduced, which makes it possible to achieve solutions of varying

degrees of complexity, without the need for the specification of arbitrary problem- depen-

dent parameters. The ability of the new approach to efficiently evolve feedforward as well

as recurrent architectures was demonstrated in a test suite of standard benchmark problems.

It was also demonstrated that the performance of the two-dimensional representation in the

tasks investigated was superior to the methods used for comparison.
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An extension of the two-dimensional representation based on the evolution of a mapping

function to adapt the weights of the network was also proposed. The new method uses ge-

netic programming to evolve a mapping function to adapt the weights, whereas the archi-

tecture is evolved by GAs. The approach opens new possibilities for genetic programming

in the evolution of artificial neural networks.

Finally, suggestions for future research were outlined, including variations on the basic

form of the new crossover operator proposed for the two-dimensional representation, and

the combination of the weight mapping approach with other methods, so as to provide them

with a better alternative for the evolution of the connection weights.
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[9] T. Bäck. Evolutionary algorithms: Comparison of approaches. In R. Paton, editor,

Computing with Biological Metaphors, pages 227–243. Chapman and Hall, 1994.
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